Nothing
$model
Model Overview
-------------------------------------------
Model Name : OneCpt_dp1IVBolus_d2IVInf_doseSt
Working Directory :
Model Type : Textual
PML
-------------------------------------------
Structural Parameters
-------------------------------------------
V Cl
-------------------------------------------
Column Mappings
-------------------------------------------
Model Variable Name : Data Column name
id : Subject
time : time
A1_1 : Dose1
A1_2 : Dose2
CObs : DV
$params
Engine Parameters
-------------------------------------------
Is population : TRUE
Sort input data : TRUE
Engine used : FOCE-ELS
Maximum number of iterations: 1000
ODE solver : Matrix Exponent
Advanced Options
-------------------------------------------
Number of integration points: 1
Number of non-param iter : 0
Number of MAPNP iter : 0
Use synthetic gradients : FALSE
LAGL nDigit : 7
BLUP nDigit : 13
Linearization step size : 0.002
ODE relative tolerance : 1e-06
ODE absolute tolerance : 1e-06
ODE max steps : 50000
Standard Errors
-------------------------------------------
Standard Errors Method : Sandwich
Finite Difference Method : Central Difference
Step size : 0.01
-------------------------------------------
$model
Model Overview
-------------------------------------------
Model Name : OneCpt_dp1IVBolus_dp2IVInf_doseSt_D
Working Directory :
Model Type : Textual
PML
-------------------------------------------
Structural Parameters
-------------------------------------------
V Cl
-------------------------------------------
Column Mappings
-------------------------------------------
Model Variable Name : Data Column name
id : Subject
time : time
A1_1 : Dose1
CObs : DV
$params
Engine Parameters
-------------------------------------------
Is population : TRUE
Sort input data : TRUE
Engine used : FOCE-ELS
Maximum number of iterations: 1000
ODE solver : Matrix Exponent
Advanced Options
-------------------------------------------
Number of integration points: 1
Number of non-param iter : 0
Number of MAPNP iter : 0
Use synthetic gradients : FALSE
LAGL nDigit : 7
BLUP nDigit : 13
Linearization step size : 0.002
ODE relative tolerance : 1e-06
ODE absolute tolerance : 1e-06
ODE max steps : 50000
Standard Errors
-------------------------------------------
Standard Errors Method : Sandwich
Finite Difference Method : Central Difference
Step size : 0.01
-------------------------------------------
$model
Model Overview
-------------------------------------------
Model Name : OneCpt_dp1IVBolus_dp2IVInf_doseSt_R
Working Directory :
Model Type : Textual
PML
-------------------------------------------
Structural Parameters
-------------------------------------------
V Cl
-------------------------------------------
Column Mappings
-------------------------------------------
Model Variable Name : Data Column name
id : Subject
time : time
A1_1 : Dose1
CObs : DV
$params
Engine Parameters
-------------------------------------------
Is population : TRUE
Sort input data : TRUE
Engine used : FOCE-ELS
Maximum number of iterations: 1000
ODE solver : Matrix Exponent
Advanced Options
-------------------------------------------
Number of integration points: 1
Number of non-param iter : 0
Number of MAPNP iter : 0
Use synthetic gradients : FALSE
LAGL nDigit : 7
BLUP nDigit : 13
Linearization step size : 0.002
ODE relative tolerance : 1e-06
ODE absolute tolerance : 1e-06
ODE max steps : 50000
Standard Errors
-------------------------------------------
Standard Errors Method : Sandwich
Finite Difference Method : Central Difference
Step size : 0.01
-------------------------------------------
$model
Model Overview
-------------------------------------------
Model Name : OneCpt_dp1IVInf_dp2IVInf_doseSt_D_D
Working Directory :
Model Type : Textual
PML
-------------------------------------------
Structural Parameters
-------------------------------------------
V Cl
-------------------------------------------
Column Mappings
-------------------------------------------
Model Variable Name : Data Column name
id : Subject
time : time
CObs : DV
$params
Engine Parameters
-------------------------------------------
Is population : TRUE
Sort input data : TRUE
Engine used : FOCE-ELS
Maximum number of iterations: 1000
ODE solver : Matrix Exponent
Advanced Options
-------------------------------------------
Number of integration points: 1
Number of non-param iter : 0
Number of MAPNP iter : 0
Use synthetic gradients : FALSE
LAGL nDigit : 7
BLUP nDigit : 13
Linearization step size : 0.002
ODE relative tolerance : 1e-06
ODE absolute tolerance : 1e-06
ODE max steps : 50000
Standard Errors
-------------------------------------------
Standard Errors Method : Sandwich
Finite Difference Method : Central Difference
Step size : 0.01
-------------------------------------------
$model
Model Overview
-------------------------------------------
Model Name : OneCpt_dp1IVInf_dp2IVInf_doseSt_R_R
Working Directory :
Model Type : Textual
PML
-------------------------------------------
Structural Parameters
-------------------------------------------
V Cl
-------------------------------------------
Column Mappings
-------------------------------------------
Model Variable Name : Data Column name
id : Subject
time : time
CObs : DV
$params
Engine Parameters
-------------------------------------------
Is population : TRUE
Sort input data : TRUE
Engine used : FOCE-ELS
Maximum number of iterations: 1000
ODE solver : Matrix Exponent
Advanced Options
-------------------------------------------
Number of integration points: 1
Number of non-param iter : 0
Number of MAPNP iter : 0
Use synthetic gradients : FALSE
LAGL nDigit : 7
BLUP nDigit : 13
Linearization step size : 0.002
ODE relative tolerance : 1e-06
ODE absolute tolerance : 1e-06
ODE max steps : 50000
Standard Errors
-------------------------------------------
Standard Errors Method : Sandwich
Finite Difference Method : Central Difference
Step size : 0.01
-------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.