NlmeVpcParams-class | R Documentation |
Class initializer for arguments of visual predictive check (VPC) runs
numReplicates |
Integer; Number of replicates to simulate the model |
seed |
Integer; Random number generator seed |
predCorrection |
Character; Type of correction to use when calculating a prediction-corrected observation.
Options are |
predVarCorr |
Logical; Set to |
outputPRED |
Logical; Set to |
stratifyColumns |
Character or character vector; Names of categorical covariates (up to 3) used to stratify modeling simulation results. |
observationVars |
NlmeObservationVar class instance or list of these instances |
simulationTables |
Optional list of simulation tables.
|
tableParams, NlmeSimTableDef, NlmeObservationVar
job <- fitmodel(model)
# View estimation results
print(job)
finalModelVPC <- copyModel(model, acceptAllEffects = TRUE, modelName = "model_VPC")
# View the model
print(finalModelVPC)
# Set up VPC arguments to have PRED outputted to simulation output dataset "predout.csv"
vpcSetup <- NlmeVpcParams(outputPRED = TRUE)
# Run VPC using the default host, default values for the relevant NLME engine arguments
finalVPCJob <- vpcmodel(model = finalModelVPC, vpcParams = vpcSetup)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.