Nothing
test_that("class validation test", {
testthat::expect_is(NlmeEngineExtraParams(), "NlmeEngineExtraParams")
})
test_that("test default values", {
params <- NlmeEngineExtraParams()
testthat::expect_equal(params@isPopulation, TRUE)
testthat::expect_equal(params@method, 5)
testthat::expect_equal(params@odeToUse, 6)
testthat::expect_equal(params@isQRPEMStyleMethod, 0)
testthat::expect_equal(params@numIterations, 1000)
testthat::expect_equal(params@xfocehess, 1)
testthat::expect_equal(params@nmxstep, 5000)
testthat::expect_equal(params@sort, " -sort ")
testthat::expect_equal(params@sand, "")
testthat::expect_equal(params@csv, " -csv ")
testthat::expect_equal(params@fisher, "")
})
test_that("test print nlme engine default values", {
params <- NlmeEngineExtraParams()
lines <- capture.output(print(params))
testthat::expect_equal(lines[4], "Is population : TRUE")
testthat::expect_equal(lines[6], "Engine used : FOCE-ELS")
testthat::expect_equal(lines[7], "Maximum number of iterations: 1000")
testthat::expect_equal(lines[8], "ODE solver : Matrix Exponent")
testthat::expect_equal(lines[15], "Use synthetic gradients : FALSE")
testthat::expect_equal(lines[18], "Linearization step size : 0.002")
testthat::expect_equal(lines[19], "ODE relative tolerance : 1e-06")
testthat::expect_equal(lines[20], "ODE absolute tolerance : 1e-06")
testthat::expect_equal(lines[21], "ODE max steps : 5000")
testthat::expect_equal(lines[25], "Standard Errors Method : Hessian")
testthat::expect_equal(lines[26], "Finite Difference Method : Central Difference")
testthat::expect_equal(lines[27], "Step size : 0.01")
})
test_that("engine params wrapper prints expected values for population model",
{
testthat::skip_on_cran()
testthat::skip_if(Sys.getenv("INSTALLDIR") == "",
message = "cannot start the test, INSTALLDIR variable is not specified.")
model <- pkmodel(
numCompartments = 1,
data = pkData,
ID = "Subject",
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "OneCpt_IVBolus_FOCE-ELS"
)
params <-
engineParams(model, ODE = "AutoDetect", numIterations = 10000)
lines <- capture.output(print(params))
testthat::expect_equal(lines[4], "Is population : TRUE")
testthat::expect_equal(lines[6], "Engine used : FOCE-ELS")
testthat::expect_equal(lines[7], "Maximum number of iterations: 10000")
testthat::expect_equal(lines[8], "ODE solver : Auto-detect")
testthat::expect_equal(lines[15], "Use synthetic gradients : FALSE")
testthat::expect_equal(lines[18], "Linearization step size : 0.002")
testthat::expect_equal(lines[19], "ODE relative tolerance : 1e-06")
testthat::expect_equal(lines[20], "ODE absolute tolerance : 1e-06")
testthat::expect_equal(lines[21], "ODE max steps : 50000")
testthat::expect_equal(lines[25], "Standard Errors Method : Sandwich")
testthat::expect_equal(lines[26], "Finite Difference Method : Central Difference")
testthat::expect_equal(lines[27], "Step size : 0.01")
})
test_that("engine params wrapper prints default values for individual model",
{
testthat::skip_on_cran()
testthat::skip_if(Sys.getenv("INSTALLDIR") == "",
message = "cannot start the test, INSTALLDIR variable is not specified.")
model <- pkmodel(
numCompartments = 1,
isPopulation = FALSE,
data = pkData,
Time = "Act_Time",
A1 = "Amount",
CObs = "Conc",
modelName = "OneCpt_IVBolus_FOCE-ELS_Individual"
)
params <- engineParams(model)
lines <- capture.output(print(params))
testthat::expect_equal(lines[4], "Is population : FALSE")
testthat::expect_equal(lines[5], "Sort input data : TRUE")
testthat::expect_equal(lines[6], "Engine used : NAIVE-POOLED")
testthat::expect_equal(lines[8], "ODE solver : Matrix Exponent")
testthat::expect_equal(lines[12], "Step size for partial deriv : 1e-05")
testthat::expect_equal(lines[14], "ODE relative tolerance : 1e-06")
testthat::expect_equal(lines[15], "ODE absolute tolerance : 1e-06")
testthat::expect_equal(lines[16], "ODE max steps : 50000")
testthat::expect_equal(lines[20], "Standard Errors Method : Hessian")
testthat::expect_equal(lines[21], "Finite Difference Method : Central Difference")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.