MCE: Detection of Outliers in Circular-Circular Regression

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/MCE.R

Description

Mean circular error

Usage

1
MCE(y,Y,n)

Arguments

y

observed values of the response variable are calculated based on model

y_i=α+β x_i+ε_i(mod 2π) (i=1,2,...,n). here n is sample size. random error

having a VonMises distribution with circular mean 0 and concentration

parameter k.

Y

the estimeted value of y under model y_i=α+β x_i+ε_i(mod 2π) (i=1,2,...,n).

n

the sample size

Details

This function may be considered as a type of arithmetic mean which is not robust to the existence of outlier.thus it can be used to detect the possible outliers in the circular regression.

Value

Number, that is mean circular error.

Author(s)

Azade Ghazanfarihesari, Majid Sarmad

References

A. H. Abuzaid, A. G. Hussin & I. B. Mohamed (2013) Detection of outliers in simple circular regression models using the mean circular error statistics.

See Also

circular, CircStats

Examples

1
2
3
4
5
6
7
8
9
#Generate a data set dependent of circular variables.
library(CircStats)
n <- 50
x <- rvm(n = 50, 0, 2)
y <- rvm(n = 50, pi/4, 5)
# Fit a circular-circular regression model.
circ.lm <- circ.reg(x, y, order = 1)
Y <- circ.lm$fitted
MCE(y, Y, n)

CircOutlier documentation built on May 19, 2017, 5:29 p.m.

Search within the CircOutlier package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.