Description Usage Arguments Value Examples
Calculates the synthetic variable of a cluster of variables. The variables can be quantitative or qualitative. The synthetic variable is the first principal component of PCAmix. The variance of the synthetic variable is the first eigenvalue. It is equal to the sum of squared correlations or correlation ratios to the synthetic variable. It measures the homogeneity of the cluster.
1 | clusterscore(Z)
|
Z |
a centered and reduced data matrix obtained with the recod function |
f |
the synthetic variables i.e. the scores on the first principal component of PCAmix |
sv |
the standard deviation of f i.e. the first singular value |
v |
the standardized loadings |
1 2 3 4 5 6 | data(decathlon)
A <- 1:5
Z <- PCAmixdata::recod(X.quanti=decathlon[1:10,A], X.quali=NULL)$Z
clusterscore(Z)
Z%*%as.matrix(clusterscore(Z)$v)
clusterscore(Z)$f
|
$f
[1] -0.1363147 -1.2599131 -0.5412853 -0.5637026 2.2100909 -1.1289024
[7] -1.3225565 -1.0872402 2.7494453 1.0803787
$sv
[1] 1.415399
$v
[1] 0.615697496 -0.433860679 0.443459688 -0.005209863 0.485796117
[,1]
SEBRLE -0.1363147
CLAY -1.2599131
KARPOV -0.5412853
BERNARD -0.5637026
YURKOV 2.2100909
WARNERS -1.1289024
ZSIVOCZKY -1.3225565
McMULLEN -1.0872402
MARTINEAU 2.7494453
HERNU 1.0803787
[1] -0.1363147 -1.2599131 -0.5412853 -0.5637026 2.2100909 -1.1289024
[7] -1.3225565 -1.0872402 2.7494453 1.0803787
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.