Nothing
# jonashaslbeck@protonmail.com; Feb 16th, 2024
# --------------------------------------------------------
# ---------- What is happening here? ---------------------
# --------------------------------------------------------
# Make function to determine whether a given time point can
# be predicted given that we git a VAR(s) model
# --------------------------------------------------------
# ---------- Function to determine valid time points -----
# --------------------------------------------------------
# Input:
# 1) n x p data matrix, including day number, beep number, subj id, modeled variables
# 2) lag order s
# Output
# 1) n x 1 vector, indicating whether each time point can be predicted
DetPredSubj <- function(beep, day, MaxLag = 1) {
Nt <- length(beep)
ind_pred <- rep(NA, Nt)
ind_pred[1:MaxLag] <- FALSE # First MaxLag can never be predicted
for(i in (MaxLag+1):Nt) {
check1 <- check2 <- check3 <- FALSE
if(!is.null(day)){
check1 <- (day[i-1] == day[i]) & ((beep[i] - beep[i-1]) == 1)
if(MaxLag > 1) check2 <- (day[i-2] == day[i]) & ((beep[i] - beep[i-2]) == 2)
if(MaxLag > 2) check3 <- (day[i-3] == day[i]) & ((beep[i] - beep[i-3]) == 3)
} else{
check1 <- ((beep[i] - beep[i-1]) == 1)
if(MaxLag > 1) check2 <-((beep[i] - beep[i-2]) == 2)
if(MaxLag > 2) check3 <- ((beep[i] - beep[i-3]) == 3)
}
if(MaxLag==1) ind_pred[i] = as.numeric(check1)
if(MaxLag==2) ind_pred[i] = as.numeric(check1 & check2)
if(MaxLag==3) ind_pred[i] = as.numeric(check1 & check2 & check3)
}
return(ind_pred)
} # eoF
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.