Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true")
)
## ----IDEAM table, echo = FALSE------------------------------------------------
# tags <- c(
# "TSSM_CON", "THSM_CON", "TMN_CON", "TMX_CON", "TSTG_CON", "HR_CAL",
# "HRHG_CON", "TV_CAL", "TPR_CAL", "PTPM_CON", "PTPG_CON", "EVTE_CON",
# "FA_CON", "NB_CON", "RCAM_CON", "BSHG_CON", "VVAG_CON", "DVAG_CON",
# "VVMXAG_CON", "DVMXAG_CON"
# )
# variable <- c(
# "Dry-bulb Temperature", "Wet-bulb Temperature",
# "Minimum Temperature", "Maximum Temperature",
# "Dry-bulb Temperature (Termograph)", "Relative Humidity",
# "Relative Humidity (Hydrograph)", "Vapour Pressure", "Dew Point",
# "Precipitation (Daily)", "Precipitation (Hourly)", "Evaporation",
# "Atmospheric Phenomenon", "Cloudiness", "Wind Trajectory",
# "Sunshine Duration", "Wind Speed", "Wind Direction",
# "Maximum Wind Speed", "Maximum Wind Direction"
# )
#
# IDEAM_tags <- data.frame(
# Tags = tags, Variable = variable,
# stringsAsFactors = FALSE
# )
# knitr::kable(IDEAM_tags)
## ----library imports, results = "hide", warning = FALSE, message = FALSE------
# library(ColOpenData)
# library(dplyr)
# library(sf)
# library(leaflet)
# library(ggplot2)
## ----polygon creation---------------------------------------------------------
# lat <- c(4.263744, 4.263744, 4.078156, 4.078156, 4.263744)
# lon <- c(-75.042067, -74.777022, -74.777022, -75.042067, -75.042067)
# polygon <- st_polygon(x = list(cbind(lon, lat))) %>% st_sfc()
# roi <- st_as_sf(polygon)
## ----polygon plot-------------------------------------------------------------
# leaflet(roi) %>%
# addProviderTiles("OpenStreetMap") %>%
# addPolygons(
# stroke = TRUE,
# weight = 2,
# color = "#2e6930",
# fillColor = "#2e6930",
# opacity = 0.6
# )
## ----stations in roi----------------------------------------------------------
# stations <- stations_in_roi(geometry = roi)
#
# head(stations)
## ----stations filtered--------------------------------------------------------
# cw_stations <- stations %>%
# filter(
# as.Date(fecha_suspension) > as.Date("2013-01-01") | estado == "Activa",
# categoria %in% c("Climática Principal", "Climática Ordinaria")
# )
#
# head(cw_stations)
## ----download climate stations------------------------------------------------
# tssm_stations <- download_climate_stations(
# stations = cw_stations,
# start_date = "2013-01-01",
# end_date = "2016-12-31",
# tag = "TSSM_CON"
# )
#
# head(tssm_stations)
## ----plot temperatures stations-----------------------------------------------
# ggplot(data = tssm_stations) +
# geom_line(aes(x = date, y = value, group = station), color = "#106ba0") +
# ggtitle("Dry-bulb Temperature in Espinal by station") +
# xlab("Date") +
# ylab("Temperature [°C]") +
# facet_grid(rows = vars(station)) +
# theme_minimal() +
# theme(
# plot.background = element_rect(fill = "white", colour = "white"),
# panel.background = element_rect(fill = "white", colour = "white"),
# plot.title = element_text(hjust = 0.5)
# )
## ----plot monthly-------------------------------------------------------------
# tssm_month <- tssm_stations %>% aggregate_climate(frequency = "month")
#
# ggplot(data = tssm_month) +
# geom_line(aes(x = date, y = value, group = station), color = "#106ba0") +
# ggtitle("Dry-bulb Temperature in Espinal by station") +
# xlab("Date") +
# ylab("Dry-bulb temperature [C]") +
# facet_grid(rows = vars(station)) +
# theme_minimal() +
# theme(
# plot.background = element_rect(fill = "white", colour = "white"),
# panel.background = element_rect(fill = "white", colour = "white"),
# plot.title = element_text(hjust = 0.5)
# )
## ----download climate data, eval = FALSE--------------------------------------
# tssm_roi <- download_climate_geom(
# geometry = roi,
# start_date = "2013-01-01",
# end_date = "2016-12-31",
# tag = "TSSM_CON"
# ) %>% aggregate_climate(frequency = "month")
## ----municipality code--------------------------------------------------------
# espinal_code <- name_to_code_mun("Tolima", "Espinal")
# espinal_code
## ----download climate mpio, eval = FALSE--------------------------------------
# tssm_mpio <- download_climate(
# code = espinal_code,
# start_date = "2013-01-01",
# end_date = "2016-12-31",
# tag = "TMX_CON"
# ) %>% aggregate_climate(frequency = "month")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.