Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true")
)
## ----available datasets, echo = FALSE-----------------------------------------
# level <- c(
# "National", "National with sex",
# "Department", "Department with Sex",
# "Municipality", "Municipality with Sex",
# "Municipaity with Sex and Ethnic Groups"
# )
# years <- c(
# "1950 - 2070", "1985 - 2050",
# "1985 - 2050", "1985 - 2050", "1985 - 2035", "1985 - 2035",
# "2018 - 2035"
# )
# dictionary_key <- c(
# "DANE_MGN_2018_DPTO", "DANE_MGN_2018_MPIO",
# "DANE_MGN_2018_MPIOCL", "DANE_MGN_2018_MZN",
# "DANE_MGN_2018_SECR", "DANE_MGN_2018_SECU",
# "DANE_MGN_2018_SETR", "DANE_MGN_2018_SETU",
# "DANE_MGN_2018_ZU"
# )
#
# mgncnpv <- data.frame(
# Level = level, Years = years,
# stringsAsFactors = FALSE
# )
# knitr::kable(mgncnpv)
## -----------------------------------------------------------------------------
# library(ColOpenData)
# library(dplyr)
# library(ggplot2)
## ----download data------------------------------------------------------------
# asen <- download_pop_projections(
# spatial_level = "national",
# start_year = 2034,
# end_year = 2034,
# include_sex = TRUE,
# include_ethnic = FALSE
# )
## ----filtered projections-----------------------------------------------------
# female_2034 <- asen %>%
# filter(
# area == "total",
# sexo == "mujer",
# edad != "100_y_mas"
# ) %>%
# mutate(edad = as.numeric(edad))
## ----age groups---------------------------------------------------------------
# age_groups <- cut(female_2034[["edad"]],
# breaks = c(-1, 2, 12, 19, 29, 39, 49, 59, 69, 79, 89, 99),
# labels = c(
# "0-2", "3-12", "13-19", "20-29", "30-39", "40-49",
# "50-59", "60-69", "70-79", "80-89", "90-99"
# )
# )
# female_groups <- female_2034 %>%
# mutate(age_group = age_groups) %>%
# group_by(age_group) %>%
# summarise(total_sum = sum(total))
## ----plot population----------------------------------------------------------
# ggplot(female_groups, aes(
# x = age_group,
# y = total_sum
# )) +
# geom_bar(stat = "identity", fill = "#f04a4c", color = "black", width = 0.6) +
# labs(
# title = "Female population counts in Colombia by age group for 2034",
# x = "Age group",
# y = "Female population"
# ) +
# theme_minimal() +
# theme(
# plot.background = element_rect(fill = "white", colour = "white"),
# panel.background = element_rect(fill = "white", colour = "white"),
# axis.text.x = element_text(angle = 45, hjust = 1),
# plot.title = element_text(hjust = 0.5)
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.