| PoisRunMulti | R Documentation |
PoisRunMulti uses a formula, data.table, and list of controls to prepare and
run a Colossus poisson regression function
PoisRunMulti(
model,
df,
a_n = list(c(0)),
keep_constant = c(0),
realization_columns = matrix(c("temp00", "temp01", "temp10", "temp11"), nrow = 2),
realization_index = c("temp0", "temp1"),
control = list(),
gradient_control = list(),
single = FALSE,
observed_info = FALSE,
fma = FALSE,
mcml = FALSE,
cons_mat = as.matrix(c(0)),
cons_vec = c(0),
...
)
model |
either a formula written for the get_form function, or the model result from the get_form function. |
df |
a data.table containing the columns of interest |
a_n |
list of initial parameter values, used to determine the number of parameters. May be either a list of vectors or a single vector. |
keep_constant |
binary values to denote which parameters to change |
realization_columns |
used for multi-realization regressions. Matrix of column names with rows for each column with realizations, columns for each realization |
realization_index |
used for multi-realization regressions. Vector of column names, one for each column with realizations. Each name should be used in the "names" variable in the equation definition |
control |
list of parameters controlling the convergence, see the Control_Options vignette for details |
gradient_control |
a list of control options for the gradient descent algorithm. If any value is given, a gradient descent algorithm is used instead of Newton-Raphson. See the Control_Options vignette for details |
single |
a boolean to denote that only the log-likelihood should be calculated and returned, no derivatives or iterations |
observed_info |
a boolean to denote that the observed information matrix should be used to calculate the standard error for parameters, not the expected information matrix |
fma |
a boolean to denote that the Frequentist Model Averaging method should be used |
mcml |
a boolean to denote that the Monte Carlo Maximum Likelihood method should be used |
cons_mat |
Matrix containing coefficients for a system of linear constraints, formatted as matrix |
cons_vec |
Vector containing constants for a system of linear constraints, formatted as vector |
... |
can include the named entries for the control list parameter |
returns a class fully describing the model and the regression results
Other Poisson Wrapper Functions:
EventAssignment.poisres(),
EventAssignment.poisresbound(),
LikelihoodBound.poisres(),
PoisRun(),
PoisRunJoint(),
Residual.poisres()
library(data.table)
df <- data.table::data.table(
"UserID" = c(112, 114, 213, 214, 115, 116, 117),
"t0" = c(18, 20, 18, 19, 21, 20, 18),
"t1" = c(30, 45, 57, 47, 36, 60, 55),
"lung" = c(0, 0, 1, 0, 1, 0, 0),
"dose" = c(0, 1, 1, 0, 1, 0, 1)
)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
df$rand0 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand1 <- floor(runif(nrow(df), min = 0, max = 5))
df$rand2 <- floor(runif(nrow(df), min = 0, max = 5))
names <- c("dose", "rand")
realization_columns <- matrix(c("rand0", "rand1", "rand2"), nrow = 1)
realization_index <- c("rand")
control <- list(
"ncores" = 1, "lr" = 0.75, "maxiter" = 1,
"halfmax" = 2, "epsilon" = 1e-6,
"deriv_epsilon" = 1e-6, "step_max" = 1.0,
"thres_step_max" = 100.0,
"verbose" = 0, "ties" = "breslow", "double_step" = 1
)
formula <- Pois(t1, lung) ~ loglinear(CONST, dose, rand, 0) + multiplicative()
res <- PoisRun(formula, df, control = control)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.