Description Usage Arguments Details References
ψ
This function computes psi_kl(t;z_0).
| 1 | 
| formulas | A list of length K contains formula objects, where K is the number of types of failures. Each element is a formula object, with the response on the left of a ~ operator, and the terms on the right. The response must be a survival object as returned by the Surv function. | 
| kk | The k^th type of failure. | 
| ll | The l^th type of failure. | 
| CIFest | The point estimator of the cumulative incidence function. | 
| data | A data frame with n observations and p number of covariates. | 
| newdata | A data frame or a matrix used for prediction. If not specified, the original data will be used instead. | 
| group | The name of the group covariates (if any). If specified, the cumulative hazards will be estimated for each group seperately. Default is  | 
| event | This is an internal binary indicator to specify if any type of failure occurs at a given time. | 
| save | An option to save the computed S0 and S1. It is highly recommended for large-scale dataset to improve the computational efficiency. Default is  | 
| group.in.train | This argument is valid only when the group argument is specified. If group is presented in both data and newdata, use  | 
This function computes
\hat{ψ}_{kl}(t; z_{0}) = \frac{1}{n}∑_{i=1}^{n}(\hat{F}_{k}(t; z_{0}) - \hat{F}_{k}(\tilde{T}_{i}; z_{0}))(z_{0}- \bar{Z}(\hat{β}_{l}, \tilde{T_{i}}))\frac{\exp(\hat{β}_{l}^{T}z_{0})δ_{li}I(\tilde{T}_{i} ≤ t)}{S^{(0)}(\hat{β}_{l}, \tilde{T}_{i})}
Cheng, S. C., Jason P. Fine, and L. J. Wei. "Prediction of cumulative incidence function under the proportional hazards model." Biometrics (1998): 219-228.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.