| ci_owa | R Documentation | 
The Ordered Weighted Averaging (OWA) operator is a multi-criteria decision aggregation method that is structurally non-compensatory (Yager, 1988).
ci_owa(x, id, indic_col, atleastjp)| x | A data.frame containing score of the simple indicators. | 
| id | Units' unique identifier. | 
| indic_col | Simple indicators column number. | 
| atleastjp | Fuzzy linguistic quantifier "At least j". | 
An object of class "CI". This is a list containing the following elements:
| CI_OWA_n | Composite indicator estimated values for OWA-. | 
| CI_OWA_p | Composite indicator estimated values for OWA+. | 
| wp | OWA weights' vector "More than j". | 
| wn | OWA weights' vector "At least j". | 
| ci_method | Method used; for this function ci_method="owa". | 
Fusco E., Liborio M.P.
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190.
ci_ogwa
data(data_HPI)
data_HPI = data_HPI[complete.cases(data_HPI),]
data_HPI_2019 = data_HPI[data_HPI$year==2019,]
Indic_name = c("Life_Expectancy","Ladder_of_life","Ecological_Footprint")
Indic_norm = data.frame("ISO"=data_HPI_2019$ISO, 
                        normalise_ci(data_HPI_2019[, Indic_name], 
                        c(1:3), 
                        c("POS","POS","NEG"),
                        method=2)$ci_norm)
                        
Indic_norm = Indic_norm[Indic_norm$Life_Expectancy>0 & 
                         Indic_norm$Ladder_of_life>0 & 
                         Indic_norm$Ecological_Footprint >0 ,]
atleast = 2
CI_owa_n = ci_owa(Indic_norm, id="ISO", 
                   indic_col=c(2:4), 
                   atleastjp=atleast)$CI_OWA_n
CI_owa_p = ci_owa(Indic_norm, id="ISO", 
                   indic_col=c(2:4), 
                   atleastjp=atleast)$CI_OWA_p
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.