CompositionalRF-package | R Documentation |
Multivariate random forest with compositional response variables and continuous predictor variables. The data are first transformed using the additive log-ratio transformation and then the multivariate random forest of Rahman R., Otridge J. and Pal R. (2017), <doi:10.1093/bioinformatics/btw765>, is applied.
Package: | CompositionalRF |
Type: | Package |
Version: | 1.4 |
Date: | 2025-09-07 |
License: | GPL-2 |
Michail Tsagris <mtsagris@uoc.gr>
Michail Tsagris mtsagris@uoc.gr.
Rahman R., Otridge J. and Pal R. (2017). IntegratedMRF: random forest-based framework for integrating prediction from different data types. Bioinformatics, 33(9): 1407–1410.
Segal M. and Xiao Y. (2011). Multivariate random forests. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1): 80–87.
Tsagris M.T., Preston S. and Wood A.T.A. (2011). A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. https://arxiv.org/pdf/1106.1451.pdf
Alenazi A. (2023). A review of compositional data analysis and recent advances. Communications in Statistics–Theory and Methods, 52(16): 5535–5567.
Friedman Jerome, Trevor Hastie and Robert Tibshirani (2009). The elements of statistical learning, 2nd edition. Springer, Berlin.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.