gen.data | R Documentation |
This function can be used for generating dichotomous response matrices based on Logistic IRT Models. Sample size, item number, parameter distributions can be specified.
gen.data(model="2PL",samplesize=1000,itemsize=100, theta.mean=0,theta.sd=1, a.mean=0, a.sd=0.2,b.mean=0, b.sd=1, c.min=0, c.max=0.25)
model |
string: option for desired IRT model. 'Rasch', '2PL' or '3PL' ('2PL' is default) |
samplesize |
numeric: Desired Sample size (Default 1000). |
itemsize |
numeric: Desired item number (Default 100). |
theta.mean |
numeric: mean value of theta normal distribution (Default 0). |
theta.sd |
numeric: standart deviation of theta normal distribution (Default 1). |
a.mean |
numeric: mean value of a parameters log normal distribution (Default 0). |
a.sd |
numeric: standart deviation of a parameters log normal distribution (Default 0.2). |
b.mean |
numeric: mean value of b parameters normal distribution (Default 0). |
b.sd |
numeric: standart deviation of b parameters normal distribution (Default 1). |
c.min |
numeric: minimum value of c parameters uniform distribution (Default 0). |
c.max |
numeric: maximum value of c parameters uniform distribution (Default 0.25). |
This function returns a a data frame
containing simulated dichotomous response matrix.
gen.data(model="2PL", samplesize=1000, itemsize=100, theta.mean=0, theta.sd=1, a.mean=0, a.sd=0.2, b.mean=0, b.sd=1, c.min=0, c.max=0.25)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.