Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(fig.width = 6,
fig.height = 6,
fig.align = "center",
warning = FALSE,
message = FALSE,
echo = TRUE,
eval = FALSE)
## -----------------------------------------------------------------------------
#
# # We disable s2
# sf::sf_use_s2(use_s2 = FALSE)
#
# # We load the .csv files
# files = c(system.file('vignette_data/Alberta_Wolves.csv', package = "CopernicusDEM"),
# system.file('vignette_data/Mountain_caribou.csv', package = "CopernicusDEM"))
#
#
# taxon_data = mapv_data = list()
#
#
# for (FILE in files) {
#
# cat(glue::glue("Processing of the '{basename(FILE)}' file ..."), '\n')
#
# dtbl = data.table::fread(FILE, header = TRUE, stringsAsFactors = FALSE)
# cols = c('location-long', 'location-lat', 'timestamp', 'individual-local-identifier',
# 'individual-taxon-canonical-name')
#
# dtbl_subs = dtbl[, ..cols]
# colnames(dtbl_subs) = c('longitude', 'latitude', 'timestamp', 'individual_local_identifier',
# 'individual-taxon-canonical-name')
#
# taxon_data[[unique(dtbl_subs$`individual-taxon-canonical-name`)]] = dtbl_subs
#
# dtbl_subs_sf = sf::st_as_sf(dtbl_subs, coords = c("longitude", "latitude"), crs = 4326)
#
# sf_rst_ext = fitbitViz::extend_AOI_buffer(dat_gps_tcx = dtbl_subs_sf,
# buffer_in_meters = 250,
# CRS = 4326,
# verbose = TRUE)
#
# #................................................................
# # Download the Copernicus DEM 30m elevation data because it has
# # a better resolution, it takes a bit longer to download because
# # the .tif file size is bigger
# #...............................................................
#
# dem_dir = tempdir()
# print(dem_dir)
#
# sfc_obj = sf_rst_ext$sfc_obj |>
# sf::st_make_valid()
#
# dem30 = CopernicusDEM::aoi_geom_save_tif_matches(sf_or_file = sfc_obj,
# dir_save_tifs = dem_dir,
# resolution = 30,
# crs_value = 4326,
# threads = parallel::detectCores(),
# verbose = TRUE)
#
# TIF = list.files(dem_dir, pattern = '.tif', full.names = TRUE)
#
# if (length(TIF) > 1) {
#
# #....................................................
# # create a .VRT file if I have more than 1 .tif files
# #....................................................
#
# file_out = file.path(dem_dir, 'VRT_mosaic_FILE.vrt')
#
# vrt_dem30 = CopernicusDEM::create_VRT_from_dir(dir_tifs = dem_dir,
# output_path_VRT = file_out,
# verbose = TRUE)
# }
#
# if (length(TIF) == 1) {
#
# #..................................................
# # if I have a single .tif file keep the first index
# #..................................................
#
# file_out = TIF[1]
# }
#
# # Crop the DEM raster
# raysh_rst = fitbitViz::crop_DEM(tif_or_vrt_dem_file = file_out,
# sf_buffer_obj = sfc_obj,
# verbose = TRUE)
#
# # Downsample the raster to make the visualization feasible
# raysh_rst_downsample = terra::aggregate(x = raysh_rst,
# fact = 5,
# fun = mean,
# cores = parallel::detectCores())
#
# # create the Elevation OpenTopoMap
# mp_elev = mapview::mapview(x = raysh_rst_downsample,
# col.regions = grDevices::terrain.colors(10),
# layer.name = 'Elevation',
# map.types = 'OpenTopoMap',
# legend = TRUE)
#
# # get the unique colors of the identifier
# unq_color_ids = length(unique(dtbl_subs_sf$individual_local_identifier))
# print(unq_color_ids)
# set.seed(seed = 3)
# colors_ids = sample(x = colors(distinct = TRUE),
# size = unq_color_ids,
# replace = FALSE)
#
# # convert the identifier to a factor
# dtbl_subs_sf$individual_local_identifier = as.factor(dtbl_subs_sf$individual_local_identifier)
#
# # visualize the identifier
# mp_ids = mapview::mapview(dtbl_subs_sf,
# zcol = 'individual_local_identifier',
# layer.name = 'identifier',
# col.regions = grDevices::colorRampPalette(colors = colors_ids, space = "Lab"),
# legend = ifelse(unq_color_ids > 10, FALSE, TRUE))
#
# # combine both mapview objects
# mp_both = mp_elev + mp_ids
#
# mapv_data[[unique(dtbl_subs$`individual-taxon-canonical-name`)]] = mp_both
# }
#
## -----------------------------------------------------------------------------
#
# #.............................................
# # create the 'mapview' object of both datasets
# #.............................................
#
# dtbl_all = rbind(taxon_data$`Canis lupus`, taxon_data$`Rangifer tarandus`)
#
# # see the number of observations for each animal
# table(dtbl_all$`individual-taxon-canonical-name`)
#
# # create an 'sf' object of both data.tables
# dat_gps_tcx = sf::st_as_sf(dtbl_all, coords = c("longitude", "latitude"), crs = 4326)
#
# lft = mapview::mapview(x = dat_gps_tcx,
# zcol = 'individual-taxon-canonical-name',
# map.types = 'OpenTopoMap',
# layer.name = 'taxon-canonical-name',
# legend = TRUE)
# lft
#
## -----------------------------------------------------------------------------
#
# mapv_data$`Rangifer tarandus` # caribou
#
## -----------------------------------------------------------------------------
#
# mapv_data$`Canis lupus` # wolves
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.