Description Usage Arguments Details Value Author(s) Examples
View source: R/FrankFrank.Weibull.MLE.R
Perform two-stage estimation based on the Frank copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).
| 1 2 | FrankFrank.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot,
                              jackknife, plot, GOF, GOF.plot, rep.GOF, digit)
 | 
| subject | a vector for numbers of subject | 
| t.event | a vector for event times | 
| event | a vector for event indicator (=1 if recurrent; =0 if censoring) | 
| t.death | a vector for death times | 
| death | a vector for death vindicator (=1 if death; =0 if censoring) | 
| stageI | an option to select MLE or LSE method for the 1st-stage optimization | 
| Weibull.plot | if TRUE, show the Weibull probability plot | 
| jackknife | if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE) | 
| plot | if TRUE, the plots for marginal distributions are shown (default = FALSE) | 
| GOF | if TRUE, show the p-values for KS-test and CvM-test | 
| GOF.plot | if TRUE, show the model diagnostic plot | 
| rep.GOF | repetition number of parametric bootstrap | 
| digit | accurate to some decimal places | 
When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.
A list with the following elements:
| Sample_size | Sample size N | 
| Case | Count for event occurences | 
| scale1 | Scale parameter for Weib(scale1, shape1) | 
| shape1 | Shape parameter for Weib(scale1, shape1) | 
| scale2 | Scale parameter for Weib(scale2, shape2) | 
| shape2 | Shape parameter for Weib(scale2, shape2) | 
| theta | Copula parameter for the Frank copula C_theta | 
| alpha | Copula parameter for the Frank copula tilde(C)_alpha | 
| COV | Asymptotic covariance estimated by the jackknife method | 
| KS | Kolmogorov-Smirnov test statistics | 
| p.KS | P-values for Kolmogorov-Smirnov tests | 
| CM | Cramer-von Mises test statistics | 
| p.CM | P-values for Cramer-von Mises tests | 
| Convergence | Convergence results for each stage | 
| Jackknife_error | Count for error in jackknife repititions | 
| Log_likelihood | Log-likelihood values | 
Xinwei Huang
| 1 2 3 4 5 6 7 8 | data = FrankFrank.Weibull.data(N = 300, scale1 = 1, shape1 =0.5, theta = 2,
                               scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)
FrankFrank.Weibull.MLE(subject = data$Subject,
                           t.event = data$T_ij, event = data$delta_ij,
                           t.death = data$T_i_star, death = data$delta_i_star,
                           jackknife= TRUE, plot = TRUE)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.