Description Usage Arguments Value Author(s) References Examples
View source: R/Joe.Markov.GOF.binom.R
Perform a parametric bootstrap test based on the Cramer-von Mises and Kolmogorov-Smirnov statistics as proposed by Huang and Emura (2019) and Huang et al. (2019-).
1  | Joe.Markov.GOF.binom(Y, k = 3, size, B = 200,GOF.plot=FALSE)
 | 
Y | 
 vector of datasets  | 
k | 
 constant determining the length between LCL and UCL (k=3 corresponds to 3-sigma limit)  | 
size | 
 number of binomial trials  | 
B | 
 the number of Bootstrap replications  | 
GOF.plot | 
 if TRUE, show the model diagnostic plots for B bootstrap replications  | 
CM | 
 The Cramer-von Mises statistic and its P-value  | 
KS | 
 The Kolmogorov-Smirnov statistic and its P-value  | 
CM.boot | 
 Bootstrap values of the Cramer-von Mises statistics  | 
KS.boot | 
 Bootstrap values of the Kolmogorov-Smirnov statistics  | 
Huang XW, Emura T
Huang XW, Emura T (2021), Model diagnostic procedures for copula-based Markov chain models for statistical process control, Communications in Statistics - Simulation and Computation, doi: 50(8):2345-67
Huang XW, Emura T (2021-), Computational methods for a copula-based Markov chain model with a binomial time series, in review
1 2 3 4 5 6  | size=50
prob=0.5
alpha=2
set.seed(1)
Y=Joe.Markov.DATA.binom(n=500,size,prob,alpha)
Joe.Markov.GOF.binom(Y,size=size,B=5,k=3,GOF.plot=TRUE) ## B=5 to save time
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.