Nothing
#' @title Conditional expectation
#'
#' @description This function computes the conditional expectation for a given copula family and a given margin variables for a clustered data model. The clusters ar3e independent but the observations with clusters are dependent, according to a one-factor copula model.
#'
#' @param w value of the conditioning random variable
#' @param family copula model: "gaussian" , "t" , "clayton" ,"joe", "frank" , "gumbel", "plackett"
#' @param rot rotation: 0 (default), 90, 180 (survival), or 270
#' @param cpar copula parameter
#' @param margin marginal distribution function
#' @param dfC degrees of freedom for the Student copula (default is NULL)
#' @param subs number of subdivisions for the integrals (default=1000)
#'
#' @author Pavel Krupskii and Bruno N. Remillard
#' @return \item{mest}{Conditional expectations}
#'
#' @examples
#' margin = function(x){ppois(x,10)}
#' expcond(0.4,'clayton',cpar=2,margin=margin)
#'
#' @export
expcond = function(w,family,rot=0,cpar,margin,dfC=NULL,subs=1000)
{
nn=length(w)
mest=numeric(nn)
for(i in 1:nn){
v=w[i]
func1 = function(y){1-pcond(margin(y),v,family,rot,cpar,dfC)}
func = function(y){ pcond(margin(y),v,family,rot,cpar,dfC)}
mest[i]= integrate(func1,0,Inf,subdivisions=subs)$value- integrate(func,-Inf,0,subdivisions=subs)$value
}
return(mest)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.