Description Details Author(s) References
Combine partial covariance matrices using a Wishart-EM algorithm. Methods are described in the November 2019 article by Akdemir et al. <https://www.biorxiv.org/content/10.1101/857425v1>. It can be used to combine partially overlapping covariance matrices from independent trials, partially overlapping multi-view relationship data from genomic experiments, partially overlapping Gaussian graphs described by their covariance structures. High dimensional covariance estimation, multi-view data integration. high dimensional covariance graph estimation.
The input to the main program CovComb is a list of partial covariance matrices. The output is an estimated combined (high dimensional) covariance matrix. The output of the algorithm, the completed covariance matrix, can be used to make inferences about unobserved covariances, as an input to sparse covariance estimation algorithms, in covariance graph estimation, in discriminant analysis.
Deniz Akdemir, Mohamed Somo, Julio Isidro Sanchez
Maintainer: Deniz Akdemir <deniz.akdemir.work@gmail.com>
Adventures in Multi-Omics I: Combining heterogeneous data sets via relationships matrices Deniz Akdemir, Julio Isidro Sanchez. <https://www.biorxiv.org/content/10.1101/857425v1>.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.