Nothing
#' CovRegRF: A package for estimating covariance matrix of a multivariate
#' response given a set of covariates with random forests
#'
#' Covariance Regression with Random Forests (CovRegRF) is a random forest
#' method for estimating the covariance matrix of a multivariate response given
#' a set of covariates. Random forest trees are built with a new splitting rule
#' which is designed to maximize the distance between the sample covariance
#' matrix estimates of the child nodes. The method is described in Alakus et al.
#' (2023). CovRegRF uses 'randomForestSRC' package (Ishwaran and Kogalur, 2022)
#' by freezing at the version 3.1.0. The custom splitting rule feature is
#' utilised to apply the proposed splitting rule.
#'
#' @section CovRegRF functions:
#' \code{\link{covregrf}}
#' \code{\link{predict.covregrf}}
#' \code{\link{significance.test}}
#' \code{\link{vimp.covregrf}}
#' \code{\link{plot.vimp.covregrf}}
#' \code{\link{print.covregrf}}
#'
#' @references Alakus, C., Larocque, D., and Labbe, A. (2023). Covariance
#' regression with random forests. BMC Bioinformatics 24, 258.
#' @references Ishwaran H., Kogalur U. (2022). Fast Unified Random Forests for
#' Survival, Regression, and Classification (RF-SRC). R package version 3.1.0,
#' \url{https://cran.r-project.org/package=randomForestSRC}.
#'
#' @docType package
#' @name CovRegRF-package
NULL
#> NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.