CovSel: Model-Free Covariate Selection
Version 1.2.1

Model-free selection of covariates under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011). Marginal co-ordinate hypothesis testing is used in situations where all covariates are continuous while kernel-based smoothing appropriate for mixed data is used otherwise.

Browse man pages Browse package API and functions Browse package files

AuthorJenny Häggström, Emma Persson,
Date of publication2015-11-09 17:23:10
MaintainerJenny Häggström <jenny.haggstrom@umu.se>
LicenseGPL-3
Version1.2.1
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("CovSel")

Man pages

cov.sel: Model-Free Selection of Covariate Sets
cov.sel.np: cov.sel.np
datc: Simulated Data, Continuous
datf: Simulated Data, Factors
datfc: Simulated Data, Mixed
lalonde: Real data, Lalonde
summary.cov.sel: Summary

Functions

cov.sel Man page
cov.sel.np Man page Source code
datc Man page
datf Man page
datfc Man page
lalonde Man page
summary.cov.sel Man page Source code

Files

inst
inst/CITATION
NAMESPACE
data
data/datc.rda
data/lalonde.rda
data/datf.rda
data/datfc.rda
R
R/summary.cov.sel.R
R/cov.sel.R
R/cov.sel.np.R
MD5
DESCRIPTION
man
man/lalonde.Rd
man/cov.sel.Rd
man/datc.Rd
man/datfc.Rd
man/datf.Rd
man/summary.cov.sel.Rd
man/cov.sel.np.Rd
CovSel documentation built on May 19, 2017, 10:07 p.m.