View source: R/consensus_cluster.R
consensus_cluster | R Documentation |
Computes the consensus between Ward's minimum variance and Complete-linkage (or Single-linkage) algorithms (i.e., the number of elements classified together by both algorithms).
consensus_cluster(k, cluster_ward, cluster_other)
k |
(int) a vector containing the number of clusters for Ward and for Complete-linkage (or Single-linkage) algorithms, respectively |
cluster_ward |
an object of class hclust for the Ward algorithm |
cluster_other |
an object of class hclust for the Complete-linkage (or Single-linkage) algorithm |
an object of class consensus_cluster
with the following
elements:
elements |
list of the elements belonging to each cluster |
;
a_star |
contingency table of the clustering |
;
max_consensus |
maximum clustering consensus |
.
Paola Tellaroli, <paola dot
tellaroli at
unipd dot
it>;;
Marco Bazzi, <bazzi at
stat dot
unipd dot
it>;
Michele Donato, <mdonato at
stanford dot
edu>.
Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. doi:10.1371/journal.pone.0152333
library(CrossClustering)
data(toy)
### toy is transposed as we want to cluster samples (columns of the
### original matrix)
toy_dist <- t(toy) |>
dist(method = "euclidean")
### Hierarchical clustering
cluster_ward <- toy_dist |>
hclust(method = "ward.D")
cluster_other <- toy_dist |>
hclust(method = "complete")
### consensus_cluster
consensus_cluster(
c(3, 4),
cluster_ward,
cluster_other
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.