# ===================== HELPER CODE ========================== if(FALSE) { library(D4TAlink.light) #library(D4TAlink) setTaskSponsor("%SPONSOR%") setTaskStructure(pathsDefault) try(setTaskRoot("%ROOT%")) # load the task task <- loadTask(project="%PROJECT%", package="%PACKAGE%", taskname="%TASK%") # render the task renderTaskRmd(task,suffix="%SUFFIX%") # archive the task to the home directory archiveTask(task,zf<-paste0("~/",task$task,".zip"),overwrite=FALSE) # settings for new repository oro <- getTaskRoot() setTaskRoot("/PATH/TO/NEW/REPOSITORY") ost <- getTaskStructure() setTaskStructure(pathsDefault) # copy the task to a new repository newtask <- restoreTask(zf) print(list.files(getTaskPaths(newtask)$data, full.names=FALSE,recursive=TRUE)) #restore old settings setTaskRoot(oro) setTaskStructure(ost) } # ============================================================
options(warn=1) knitr::opts_chunk$set( fig.cap = TRUE, eval = TRUE, echo = FALSE, comment = "#", message = FALSE, error = TRUE, warning = TRUE, dpi = 150, dev.args = list(pointsize=8) ) library(officedown) library(officer)
# Load libraries library(D4TAlink.light) #library(D4TAlink) setTaskSponsor("%SPONSOR%") setTaskStructure(pathsDefault) # try(setTaskRoot("%ROOT%"))
# Load task task <- loadTask(project="%PROJECT%", package="%PACKAGE%", taskname="%TASK%",quiet=TRUE) # if task does not exist on repository, create it if(is.null(task)) { task <- initTask(project="%PROJECT%", package="%PACKAGE%", taskname="%TASK%", sponsor="%SPONSOR%", author="%AUTHOR%") } options(warn = 2)
\newpage
In this section the scope / rationale of the task should be explained.
The section list the information and data sources.
# Code to load input data # ta <- loadTask(task$project,task$package,"20220102_loadAssays) # ass <- readBinary(ta,"assays")
The results-section contains more details regarding the results of task X.
# Chunk that contains the analysis R code.
head(data.frame(l=letters,L=LETTERS))
boxplot(1:8)
The section contains detailed information on output (incl. location).
# Code to save data # saveBinary(ass,ta,"assays")
Describe here the conclusions of the analyses.
Describe here the process used to validate the statistical analysis performed above.
Depending on an estimation of risk, the validation is typically 1) no validation, 2) a review of report objects, 3) a standard code review, 4) extended code review, or 5) double coding of the analyses.
Example: Validation of these analyses by double coding was performed in task %TASK%_validation.
## Create a validation task vt <- initTask(project="%PROJECT%", package="%PACKAGE%", taskname="%TASK%_validation") initTaskRmd(vt)
\newpage
\newpage
# In the appendix the session information is being printed for reproducibility. sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.