litters | R Documentation |
Data on the body and brain weights of 20 mice, together with the size of the litter. Two mice were taken from each litter size.
litters
This data frame contains the following columns:
litter size
body weight
brain weight
Wainright P, Pelkman C and Wahlsten D 1989. The quantitative relationship between nutritional effects on preweaning growth and behavioral development in mice. Developmental Psychobiology 22: 183-193.
print("Multiple Regression - Example 6.2")
pairs(litters, labels=c("lsize\n\n(litter size)", "bodywt\n\n(Body Weight)",
"brainwt\n\n(Brain Weight)"))
# pairs(litters) gives a scatterplot matrix with less adequate labeling
mice1.lm <- lm(brainwt ~ lsize, data = litters) # Regress on lsize
mice2.lm <- lm(brainwt ~ bodywt, data = litters) #Regress on bodywt
mice12.lm <- lm(brainwt ~ lsize + bodywt, data = litters) # Regress on lsize & bodywt
summary(mice1.lm)$coef # Similarly for other coefficients.
# results are consistent with the biological concept of brain sparing
pause()
hat(model.matrix(mice12.lm)) # hat diagonal
pause()
plot(lm.influence(mice12.lm)$hat, residuals(mice12.lm))
print("Diagnostics - Example 6.3")
mice12.lm <- lm(brainwt ~ bodywt+lsize, data=litters)
oldpar <-par(mfrow = c(1,2))
bx <- mice12.lm$coef[2]; bz <- mice12.lm$coef[3]
res <- residuals(mice12.lm)
plot(litters$bodywt, bx*litters$bodywt+res, xlab="Body weight",
ylab="Component + Residual")
panel.smooth(litters$bodywt, bx*litters$bodywt+res) # Overlay
plot(litters$lsize, bz*litters$lsize+res, xlab="Litter size",
ylab="Component + Residual")
panel.smooth(litters$lsize, bz*litters$lsize+res)
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.