yhat.WrappedModel | R Documentation |
These functions are default predict functions. Each function returns a single numeric score for each new observation. Those functions are very important since information from many models have to be extracted with various techniques.
## S3 method for class 'WrappedModel'
yhat(X.model, newdata, ...)
## S3 method for class 'H2ORegressionModel'
yhat(X.model, newdata, ...)
## S3 method for class 'H2OBinomialModel'
yhat(X.model, newdata, ...)
## S3 method for class 'H2OMultinomialModel'
yhat(X.model, newdata, ...)
## S3 method for class 'scikitlearn_model'
yhat(X.model, newdata, ...)
## S3 method for class 'keras'
yhat(X.model, newdata, ...)
## S3 method for class 'LearnerRegr'
yhat(X.model, newdata, ...)
## S3 method for class 'LearnerClassif'
yhat(X.model, newdata, ...)
## S3 method for class 'GraphLearner'
yhat(X.model, newdata, ...)
## S3 method for class 'xgb.Booster'
yhat(X.model, newdata, ...)
## S3 method for class 'workflow'
yhat(X.model, newdata, ...)
## S3 method for class 'model_stack'
yhat(X.model, newdata, ...)
X.model |
object - a model to be explained |
newdata |
data.frame or matrix - observations for prediction |
... |
other parameters that will be passed to the predict function |
Currently supported packages are:
mlr
see more in explain_mlr
h2o
see more in explain_h2o
scikit-learn
see more in explain_scikitlearn
keras
see more in explain_keras
mlr3
see more in explain_mlr3
xgboost
see more in explain_xgboost
tidymodels
see more in explain_tidymodels
An numeric vector of predictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.