Nothing
#' Object resulting from the fit of a double additive location-scale model (DALSM).
#'
#' @description An object returned by the \code{\link{DALSM}} function: this is a list
#' with various components related to the fit of a double additive location-scale model using Laplace P-splines.
#'
#' @return A \code{DALSM} object has the following elements:
#'
#' Essential part:
#' \itemize{
#' \item{\code{converged} : \verb{ }}{logical convergence indicator.}
#' \item{\code{derr} : \verb{ }}{estimated standardized error distribution returned as a \link{densLPS.object}.}
#' \item{\code{psi1} : \verb{ }}{estimated regression parameters for location (fixed effects, B-spline coefs for the J1 additive terms).}
#' \item{\code{psi2} : \verb{ }}{estimated regression parameters for dispersion (fixed effects, B-spline coefs for the J2 additive terms).}
#' \item{\code{fixed.loc} : \verb{ }}{matrix with the estimated fixed effects (est,se,ci.low,ci.up) in the location sub-model.}
#' \item{\code{fixed.disp} : \verb{ }}{matrix with the estimated fixed effects (est,se,ci.low,ci.up) in the dispersion sub-model.}
#' \item{\code{mu} : \verb{ }}{n-vector with the fitted conditional mean.}
#' \item{\code{sd} : \verb{ }}{n-vector with the fitted conditional standard deviation.}
#' }
#' Additional elements:
#' \itemize{
#' \item{\code{data} : \verb{ }}{the original data frame used when calling the \code{\link{DALSM}} function.}
#' \item{\code{phi} : \verb{ }}{estimated B-spline coefs for the log-hazard of the error distribution.}
#' \item{\code{K.error} : \verb{ }}{number of B-splines used to approximate the log of the error hazard.}
#' \item{\code{rmin, rmax} : \verb{ }}{minimum and maximum values for the support of the standardized error distribution.}
#' \item{\code{knots.error} : \verb{ }}{equidistant knots on (rmin,rmax) used to specify the B-spline basis for the log of the error hazard.}
#' \item{\code{bread.psi1, Sand.psi1, Cov.psi1}: \verb{ }}{estimated Variance-Covariance matrix for \eqn{\psi_1}.}
#' \item{\code{U.psi1} : \verb{ }}{gradient for \eqn{\psi_1}.}
#' \item{\code{bread.psi2, Sand.psi2, Cov.psi2}: \verb{ }}{estimated Variance-Covariance matrix for \eqn{\psi_2}.}
#' \item{\code{U.psi2} : \verb{ }}{gradient for \eqn{\psi_2}.}
#' \item{\code{U.psi} : \verb{ }}{gradient for \eqn{\psi=(\psi_1,\psi_2)}.}
#' \item{\code{Cov.psi} : \verb{ }}{variance-covariance for \eqn{\psi=(\psi_1,\psi_2)}.}
#' \item{\code{regr1} : \verb{ }}{object generated by \code{\link{DesignFormula}} for the specified submodel for location.}
#' \item{\code{regr2} : \verb{ }}{object generated by \code{\link{DesignFormula}} for the specified submodel for dispersion.}
#' \item{\code{res} : \verb{ }}{n-vector or nx2 matrix (if IC data) with the standardized residuals for the fitted model.}
#' \item{\code{expctd.res} : \verb{ }}{n-vector with observed standardized residual for a non RC unit, or their expected value if right-censored.}
#' \item{\code{REML} : \verb{ }}{logical indicating whether REML estimation was performed.}
#' \item{\code{n} : \verb{ }}{the sample size.}
#' \item{\code{n.uncensored} : \verb{ }}{number of non-censored response data.}
#' \item{\code{event} : \verb{ }}{n-vector of event indicators (1: non right-censored ; 0: right censoring).}
#' \item{\code{is.IC} : \verb{ }}{n-vector with interval censoring indicators.}
#' \item{\code{n.IC} : \verb{ }}{number of interval-censored response data.}
#' \item{\code{n.RC} : \verb{ }}{number of right-censored response data.}
#' \item{\code{perc.obs} : \verb{ }}{percentage of exactly observed response data.}
#' \item{\code{perc.IC} : \verb{ }}{percentage of interval-censored response data.}
#' \item{\code{perc.RC} : \verb{ }}{percentage of right-censored response data.}
#' \item{\code{cred.int} : \verb{ }}{nominal level for the reported credible intervals.}
#' \item{\code{alpha} : \verb{ }}{user-specified \eqn{\alpha} with Bayesian \eqn{(1-\alpha)} credible intervals reported.}
#' \item{\code{sandwich} : \verb{ }}{logical indicating if variance-covariance and standard errors computed using sandwich estimator in the NP case.}
#' \item{\code{diag.only} : \verb{ }}{logical indicating if the correction to the Hessian under REML only concerns diagonal elements.}
#' \item{\code{iter} : \verb{ }}{number of iterations.}
#' \item{\code{elapsed.time} : \verb{ }}{time required by the model fitting procedure.}
#' }
#' If there are additive terms in the location submodel:
#' \itemize{
#' \item{\code{K1} : \verb{ }}{number of B-splines used to describe an additive term in the location submodel.}
#' \item{\code{xi1} : \verb{ }}{matrix with the selected log penalty parameters for the J1 additive terms in the location submodel (point estimate, se, ci.low, ci.up.}
#' \item{\code{U.xi1} : \verb{ }}{gradient for the log of the penalty parameters for the J1 additive terms in the location submodel.}
#' \item{\code{U.lambda1} : \verb{ }}{gradient for the penalty parameters for the J1 additive terms in the location submodel.}
#' \item{\code{Cov.xi1} : \verb{ }}{estimated Variance-Covariance matrix for the parameters involved in the J1 additive terms in the location submodel.}
#' \item{\code{lambda1.min} : \verb{ }}{minimal value for the penalty parameters in the additive submodel for location.}
#' \item{\code{lambda1} : \verb{ }}{matrix with the selected penalty parameters for the J1 additive terms in the location submodel (point estimate, se, ci.low, ci.up).}
#' \item{\code{ED1} : \verb{ }}{matrix with the effective dimensions for each of the J1 additive terms in the location submodel (point estimate,ci.low,ci.up).}
#' }
#' If there are additive terms in the dispersion submodel:
#' \itemize{
#' \item{\code{K2} : \verb{ }}{number of B-splines used to describe an additive term in the dispersion submodel.}
#' \item{\code{xi2} : \verb{ }}{matrix with the selected log penalty parameters for the J2 additive terms in the dispersion submodel (point estimate, se, ci.low, ci.up).}
#' \item{\code{U.xi2} : \verb{ }}{gradient for the log of the penalty parameters for the J2 additive terms in the dispersion submodel.}
#' \item{\code{U.lambda2} : \verb{ }}{gradient for the penalty parameters for the J2 additive terms in the dispersion submodel.}
#' \item{\code{Cov.xi2} : \verb{ }}{estimated Variance-Covariance matrix for the parameters involved in the J2 additive terms in the dispersion submodel.}
#' \item{\code{lambda2.min} : \verb{ }}{minimal value for the penalty parameters in the additive submodel for dispersion.}
#' \item{\code{lambda2} : \verb{ }}{matrix with the selected penalty parameters for the J2 additive terms in the dispersion submodel (point estimate, se, ci.low, ci.up).}
#' \item{\code{ED2} : \verb{ }}{matrix with the effective dimensions for each of the J2 additive terms in the dispersion submodel (point estimate,ci.low,ci.up).}
#' }
#'
#' @author Philippe Lambert \email{p.lambert@uliege.be}
#' @references Lambert, P. (2021). Fast Bayesian inference using Laplace approximations
#' in nonparametric double additive location-scale models with right- and
#' interval-censored data.
#' \emph{Computational Statistics and Data Analysis}, 161: 107250.
#' <doi:10.1016/j.csda.2021.107250>
#'
#' @seealso \code{\link{DALSM}}, \code{\link{print.DALSM}}, \code{\link{plot.DALSM}}, \code{\link{densityLPS}}, \code{\link{densLPS.object}}
#'
#' @name DALSM.object
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.