Nothing
#' Object generated by function \code{densityLPS}
#'
#' @description An object returned by function \code{\link{densityLPS}}: this is a list
#' with various components related to the estimation of a density with given mean and variance from potentially right- or interval-censored data using Laplace P-splines.
#'
#' @return An object returned by \code{\link{densityLPS}} has the following elements:
#' Essential part:
#' \itemize{
#' \item{\code{converged} : \verb{ }}{logical convergence indicator.}
#' \item{\code{ddist} : \verb{ }}{fitted density function.}
#' \item{\code{Hdist} : \verb{ }}{fitted cumulative hazard function.}
#' \item{\code{hdist} : \verb{ }}{fitted hazard function.}
#' \item{\code{pdist} : \verb{ }}{fitted cumulative distribution function.}
#' \item{\code{ymin, ymax} : \verb{ }}{assumed values for the support of the distribution.}
#' \item{\code{phi} : \verb{ }}{estimated B-spline coefficients for the log-hazard of the error distribution.}
#' \item{\code{U.phi} : \verb{ }}{score of the Lagrangian G(\eqn{\phi|\omega}).}
#' \item{\code{tau}, \code{ltau} : \verb{ }}{selected penalty parameter and its logarithm.}
#' \item{\code{est} : \verb{ }}{vector containing the estimated/selected (\eqn{\phi,\log\tau}) parameters.}
#' \item{\code{fixed.phi} : \verb{ }}{logical indicating whether the spline parameters were given fixed values or estimated from the data.}
#' \item{\code{phi.ref} : \verb{ }}{reference values for the spline parameters with respect to which \eqn{\phi} is compared during penalization.}
#' \item{\code{BWB} : \verb{ }}{Hessian for \eqn{\phi} without the penalty contribution.}
#' \item{\code{Prec} : \verb{ }}{Hessian or posterior precision matrix for \eqn{\phi}.}
#' \item{\code{Fisher} : \verb{ }}{Fisher information for \eqn{\phi}.}
#' \item{\code{bins, ugrid, du} : \verb{ }}{bins (of width 'du') and with midpoints 'ugrid' partitioning the support of the density.}
#' \item{\code{h.grid, H.grid, dens.grid} : \verb{ }}{hazard, cumulative hazard and density values at the grid midpoints 'ugrid'.}
#' \item{\code{h.bins, H.bins, dens.bins} : \verb{ }}{hazard, cumulative hazard and density values at the bin limits 'bins'.}
#' \item{\code{expected} : \verb{ }}{expected number of observations within each bin.}
#' \item{\code{Finfty} : \verb{ }}{integrated density value over the considered support.}
#' \item{\code{Mean0, Var0} : \verb{ }}{when specified, constrained mean and variance values during estimation.}
#' \item{\code{mean.dist, var.dist} : \verb{ }}{mean and variance of the fitted density.}
#' \item{\code{method} : \verb{ }}{method used for penaly selection: "evidence" (by maximizing the marginal posterior for \eqn{\tau}) or "Schall" (Schall's method).}
#' \item{\code{ed} : \verb{ }}{effective number of (spline) parameters.}
#' \item{\code{iterations} : \verb{ }}{total number of iterations necessary for convergence.}
#' \item{\code{elapsed.time} : \verb{ }}{time required for convergence.}
#' }
#' Additional elements:
#' the content of the \link{Dens1d.object} used when \link{densityLPS} was called.
#'
#' @author Philippe Lambert \email{p.lambert@uliege.be}
#' @references Lambert, P. (2021). Fast Bayesian inference using Laplace approximations
#' in nonparametric double additive location-scale models with right- and
#' interval-censored data.
#' \emph{Computational Statistics and Data Analysis}, 161: 107250.
#' <doi:10.1016/j.csda.2021.107250>
#'
#' @seealso \code{\link{densityLPS}}, \code{\link{DALSM}}
#'
#' @name densLPS.object
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.