DMOEM | R Documentation |
The DMOEM is an overrelaxation algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
DMOEM( y, M, seed, alpha0, mu0, sigma0, MOEMalpha0, MOEMmu0, MOEMsigma0, omega, i, epsilon )
y |
is a data matrix |
M |
is the number of subsets |
seed |
is the recommended way to specify seeds |
alpha0 |
is the initial value of the mixing weight under the EM algorithm |
mu0 |
is the initial value of the mean under the EM algorithm |
sigma0 |
is the initial value of the covariance under the EM algorithm |
MOEMalpha0 |
is the initial value of the mixing weight under the MOEM algorithm |
MOEMmu0 |
is the initial value of the mean under the MOEM algorithm |
MOEMsigma0 |
is the initial value of the covariance under the MOEM algorithm |
omega |
is the overrelaxation factor |
i |
is the number of iterations |
epsilon |
is the threshold value |
DMOEMalpha,DMOEMmu,DMOEMsigma,DMOEMtime
library(mvtnorm) alpha1= c(rep(1/4,4)) mu1=matrix(0,nrow=4,ncol=4) for (k in 1:4){ mu1[4,]=c(runif(4,(k-1)*3,k*3)) } sigma1=list() for (k in 1:4){ sigma1[[k]]= diag(4)*0.1 } y= matrix(0,nrow=200,ncol=4) for(k in 1:4){ y[c(((k-1)*200/4+1):(k*200/4)),] = rmvnorm(200/4,mu1[k,],sigma1[[k]]) } M=5 seed=123 alpha0= alpha1 mu0=mu1 sigma0=sigma1 MOEMalpha0= alpha1 MOEMmu0=mu1 MOEMsigma0=sigma1 omega=0.15 i=10 epsilon=0.005 DMOEM(y,M,seed,alpha0,mu0,sigma0,MOEMalpha0,MOEMmu0,MOEMsigma0,omega,i,epsilon)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.