Replmre2: Mixed-Effects Regression Analysis for All Locations

View source: R/hello.R

Replmre2R Documentation

Mixed-Effects Regression Analysis for All Locations

Description

This function runs a mixed-effects regression model for all locations within a dataset.

Usage

Replmre2(data, formula, location_var, random_effect_var)

Arguments

data

The dataset to be analyzed.

formula

The formula for the regression model.

location_var

The variable indicating different locations (e.g., 'REGCODE').

random_effect_var

The variable to be used as a random effect (e.g., 'hhid').

Value

A dataframe containing the results

Examples

set.seed(123)
library(dplyr)
# Create dummy data
dummy_data <- data.frame(
  years_education = rnorm(100, 12, 3),    # Represents years of education
  gender_female = rbinom(100, 1, 0.5),    # 1 = Female, 0 = Male
  household_wealth = sample(1:5, 100, replace = TRUE),  # Wealth index from 1 to 5
  district_code = sample(1:10, 100, replace = TRUE)     # Represents district codes
) %>% arrange(district_code)

# Create HHid (Household ID), grouping every 3-4 records, and convert to character
dummy_data$HHid <- as.character(rep(1:20, each = 5, length.out = nrow(dummy_data)))

# Define a simple regression formula
formula <- years_education ~ gender_female + household_wealth:gender_female
location_var <- "district_code"
random_effect_var <- "HHid"

# Run mixed-effects regression for all districts
results <- DHSr::Replmre2(dummy_data, formula, location_var, random_effect_var)
print(head(results))

DHSr documentation built on April 4, 2025, 12:18 a.m.