| pnchisqAppr | R Documentation |
Compute (approximate) probabilities for the non-central chi-squared distribution.
The non-central chi-squared distribution with df= n
degrees of freedom and non-centrality parameter ncp
= \lambda has density
f(x) = f_{n,\lambda}(x) = e^{-\lambda / 2}
\sum_{r=0}^\infty \frac{(\lambda/2)^r}{r!}\, f_{n + 2r}(x)
for x \ge 0; for more, see R's help page for pchisq.
R's own historical and current versions, but with more tuning parameters;
Historical relatively simple approximations listed in Johnson, Kotz, and Balakrishnan (1995):
Patnaik(1949)'s approximation to the non-central via central
chi-squared. Is also the formula 26.4.27 in Abramowitz & Stegun, p.942.
Johnson et al mention that the approximation error is
O(1/\sqrt(\lambda)) for \lambda \to \infty.
Pearson(1959) is using 3 moments instead of 2 as Patnaik (to
approximate via a central chi-squared), and therefore better than
Patnaik for the right tail; further (in Johnson et al.), the
approximation error is O(1/\lambda) for \lambda \to \infty.
Abdel-Aty(1954)'s “first approximation” based on
Wilson-Hilferty via Gaussian (pnorm) probabilities, is
partly wrongly cited in Johnson et al., p.463, eq.(29.61a).
Bol'shev and Kuznetzov (1963) concentrate on the case of
small ncp \lambda and provide an “approximation” via
central chi-squared with the same degrees of freedom df,
but a modified q (‘x’); the approximation has error
O(\lambda^3) for \lambda \to 0 and is from
Johnson et al., p.465, eq.(29.62) and (29.63).
Sankaran(1959, 1963) proposes several further approximations base
on Gaussian probabilities, according to Johnson
et al., p.463. pnchisqSankaran_d() implements its formula (29.61d).
pnchisq():an R implementation of R's own C pnchisq_raw(),
but almost only up to Feb.27, 2004, long before the log.p=TRUE
addition there, including logspace arithmetic in April 2014,
its finish on 2015-09-01. Currently for historical reference only.
pnchisqV():a Vectorize()d pnchisq.
pnchisqRC():R's C implementation as of Aug.2019; but with many more options. Currently extreme cases tend to hang on Winbuilder (?)
pnchisqIT:....
pnchisqTerms:....
pnchisqT93:pure R implementations of approximations when
both q and ncp are large, by Temme(1993), from Johnson
et al., p.467, formulas (29.71 a), and (29.71 b), using
auxiliary functions pnchisqT93a() and pnchisqT93b()
respectively, with adapted formulas for the log.p=TRUE cases.
pnchisq_ss():....
ss:....
ss2:....
ss2.:....
pnchisq (q, df, ncp = 0, lower.tail = TRUE,
cutOffncp = 80, itSimple = 110, errmax = 1e-12, reltol = 1e-11,
maxit = 10* 10000, verbose = 0, xLrg.sigma = 5)
pnchisqV(x, ..., verbose = 0)
pnchisqRC (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE,
no2nd.call = FALSE,
cutOffncp = 80, small.ncp.logspace = small.ncp.logspaceR2015,
itSimple = 110, errmax = 1e-12,
reltol = 8 * .Machine$double.eps, epsS = reltol/2, maxit = 1e6,
verbose = FALSE)
pnchisqAbdelAty (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqBolKuz (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqPatnaik (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqPearson (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqSankaran_d(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisq_ss (x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, i.max = 10000)
pnchisqTerms (x, df, ncp, lower.tail = TRUE, i.max = 1000)
pnchisqT93 (q, df, ncp, lower.tail = TRUE, log.p = FALSE, use.a = q > ncp)
pnchisqT93.a(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
pnchisqT93.b(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
ss (x, df, ncp, i.max = 10000, useLv = !(expMin < -lambda && 1/lambda < expMax))
ss2 (x, df, ncp, i.max = 10000, eps = .Machine$double.eps)
ss2. (q, df, ncp = 0, errmax = 1e-12, reltol = 2 * .Machine$double.eps,
maxit = 1e+05, eps = reltol, verbose = FALSE)
x |
numeric vector (of ‘quantiles’, i.e., abscissa values). |
q |
number ( ‘quantile’, i.e., abscissa value.) |
df |
degrees of freedom |
ncp |
non-centrality parameter |
lower.tail, log.p |
logical, see, e.g., |
i.max |
number of terms in evaluation ... |
use.a |
|
cutOffncp |
a positive number, the cutoff value for |
itSimple |
... |
errmax |
absolute error tolerance. |
reltol |
convergence tolerance for relative error. |
maxit |
maximal number of iterations. |
xLrg.sigma |
positive number ... |
no2nd.call |
logical indicating if a 2nd call is made to the internal function .... |
small.ncp.logspace |
logical vector or |
epsS |
small positive number, the convergence tolerance of the ‘simple’ iterations... |
verbose |
logical or integer specifying if or how much the algorithm progress should be monitored. |
... |
further arguments passed from |
useLv |
|
eps |
convergence tolerance, a positive number. |
pnchisq_ss()uses si <- ss(x, df, ..) to get the series terms,
and returns 2*dchisq(x, df = df +2) * sum(si$s).
ss()computes the terms needed for the expansion used in
pnchisq_ss().
ss2()computes some simple “statistics” about ss(..).
ss()returns a list with 3 components
s |
the series |
i1 |
location (in |
max |
(first) location of the maximal value in the series (i.e.,
|
Martin Maechler, from May 1999; starting from a post to the S-news
mailing list by Ranjan Maitra (@ math.umbc.edu) who showed a version of
our pchisqAppr.0() thanking Jim Stapleton for providing it.
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995)
Continuous Univariate Distributions Vol 2, 2nd ed.; Wiley;
chapter 29 Noncentral \chi^2-Distributions;
notably Section 8 Approximations, p.461 ff.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun
pchisq and the wienergerm approximations for it:
pchisqW() etc.
r_pois() and its plot function, for an aspect of the series
approximations we use in pnchisq_ss().
## set of quantiles to use :
qq <- c(.001, .005, .01, .05, (1:9)/10, 2^seq(0, 10, by= 0.5))
## Take "all interesting" pchisq-approximation from our pkg :
pkg <- "package:DPQ"
pnchNms <- c(paste0("pchisq", c("V", "W", "W.", "W.R")),
ls(pkg, pattern = "^pnchisq"))
pnchNms <- pnchNms[!grepl("Terms$", pnchNms)]
pnchF <- sapply(pnchNms, get, envir = as.environment(pkg))
str(pnchF)
ncps <- c(0, 1/8, 1/2)
pnchR <- as.list(setNames(ncps, paste("ncp",ncps, sep="=")))
for(i.n in seq_along(ncps)) {
ncp <- ncps[i.n]
pnF <- if(ncp == 0) pnchF[!grepl("chisqT93", pnchNms)] else pnchF
pnchR[[i.n]] <- sapply(pnF, function(F)
Vectorize(F, names(formals(F))[[1]])(qq, df = 3, ncp=ncp))
}
str(pnchR, max=2)
## A case where the non-central P[] should be improved :
## First, the central P[] which is close to exact -- choosing df=2 allows
## truly exact values: chi^2 = Exp(1) !
opal <- palette()
palette(c("black", "red", "green3", "blue", "cyan", "magenta", "gold3", "gray44"))
cR <- curve(pchisq (x, df=2, lower.tail=FALSE, log.p=TRUE), 0, 4000, n=2001)
cRC <- curve(pnchisqRC(x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE),
add=TRUE, col=adjustcolor(2,1/2), lwd=3, lty=2, n=2001)
cR0 <- curve(pchisq (x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE),
add=TRUE, col=adjustcolor(3,1/2), lwd=4, n=2001)
## smart "named list" constructur :
list_ <- function(...)
`names<-`(list(...), vapply(sys.call()[-1L], as.character, ""))
JKBfn <-list_(pnchisqPatnaik,
pnchisqPearson,
pnchisqAbdelAty,
pnchisqBolKuz,
pnchisqSankaran_d)
cl. <- setNames(adjustcolor(3+seq_along(JKBfn), 1/2), names(JKBfn))
lw. <- setNames(2+seq_along(JKBfn), names(JKBfn))
cR.JKB <- sapply(names(JKBfn), function(nmf) {
curve(JKBfn[[nmf]](x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE),
add=TRUE, col=cl.[[nmf]], lwd=lw.[[nmf]], lty=lw.[[nmf]], n=2001)
})
legend("bottomleft", c("pchisq", "pchisq.ncp=0", "pnchisqRC", names(JKBfn)),
col=c(palette()[1], adjustcolor(2:3,1/2), cl.),
lwd=c(1,3,4, lw.), lty=c(1,2,1, lw.))
palette(opal)# revert
all.equal(cRC, cR0, tol = 1e-15) # TRUE [for now]
## the problematic "jump" :
as.data.frame(cRC)[744:750,]
if(.Platform$OS.type == "unix")
## verbose=TRUE may reveal which branches of the algorithm are taken:
pnchisqRC(1500, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE, verbose=TRUE) #
## |--> -Inf currently
## The *two* principal cases (both lower.tail = {TRUE,FALSE} !), where
## "2nd call" happens *and* is currently beneficial :
dfs <- c(1:2, 5, 10, 20)
pL. <- pnchisqRC(.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE, verbose = TRUE)
pR. <- pnchisqRC( 100, df=dfs, ncp=0, log.p=TRUE, verbose = TRUE)
## R's own non-central version (specifying 'ncp'):
pL0 <- pchisq (.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE)
pR0 <- pchisq ( 100, df=dfs, ncp=0, log.p=TRUE)
## R's *central* version, i.e., *not* specifying 'ncp' :
pL <- pchisq (.00001, df=dfs, log.p=TRUE, lower.tail=FALSE)
pR <- pchisq ( 100, df=dfs, log.p=TRUE)
cbind(pL., pL, relEc = signif(1-pL./pL, 3), relE0 = signif(1-pL./pL0, 3))
cbind(pR., pR, relEc = signif(1-pR./pR, 3), relE0 = signif(1-pR./pR0, 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.