pnormLU | R Documentation |
Bounds for 1 - \Phi(x)
, i.e., pnorm(x, *,
lower.tail=FALSE)
, typically related to Mill's Ratio.
pnormL_LD10(x, lower.tail = FALSE, log.p = FALSE)
pnormU_S53 (x, lower.tail = FALSE, log.p = FALSE)
x |
positive (at least non-negative) numeric vector. |
lower.tail , log.p |
logical, see, e.g., |
a numeric vector like x
Martin Maechler
Lutz Duembgen (2010)
Bounding Standard Gaussian Tail Probabilities;
arXiv preprint 1012.2063
,
https://arxiv.org/abs/1012.2063
pnorm
.
x <- seq(1/64, 10, by=1/64)
px <- cbind(
lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE)
, Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
, Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
matplot(x, px, type="l") # all on top of each other
matplot(x, (D <- px[,2:3] - px[,1]), type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
## check they are lower and upper bounds indeed :
stopifnot(D[,"Lo"] < 0, D[,"Up"] > 0)
matplot(x[x>4], D[x>4,], type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
### zoom out to larger x : [1, 1000]
x <- seq(1, 1000, by=1/4)
px <- cbind(
lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE)
, Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
, Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
matplot(x, px, type="l") # all on top of each other
matplot(x, (D <- px[,2:3] - px[,1]), type="l", log="x") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
## check they are lower and upper bounds indeed :
table(D[,"Lo"] < 0) # no longer always true
table(D[,"Up"] > 0)
## not even when equality (where it's much better though):
table(D[,"Lo"] <= 0)
table(D[,"Up"] >= 0)
## *relative* differences:
matplot(x, (rD <- 1 - px[,2:3] / px[,1]), type="l", log = "x")
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
## abs()
matplot(x, abs(rD), type="l", log = "xy", axes=FALSE, # NB: curves *cross*
main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)")
legend("top", c("Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=1:2, lty=1:2)
sfsmisc::eaxis(1, sub10 = 2)
sfsmisc::eaxis(2)
abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4))
### zoom out to LARGE x : ---------------------------
x <- 2^seq(0, 30, by = 1/64)
if(FALSE)## or even HUGE:
x <- 2^seq(4, 513, by = 1/16)
px <- cbind(
lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE)
, a0 = dnorm(x, log=TRUE)
, a1 = dnorm(x, log=TRUE) - log(x)
, Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
, Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
col4 <- adjustcolor(1:4, 1/2)
doLegTit <- function() {
title(main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)")
legend("top", c("phi(x)", "phi(x)/x", "Low.Bnd(D10)", "Upp.Bnd(S53)"),
bty="n", col=col4, lty=1:4)
}
## *relative* differences are relevant:
matplot(x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x",
ylim = c(-1,1)/2^8, col=col4) ; doLegTit()
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
## abs(rel.Diff) ---> can use log-log:
matplot(x, abs(rD), type="l", log = "xy", xaxt="n", yaxt="n"); doLegTit()
sfsmisc::eaxis(1, sub10=2)
sfsmisc::eaxis(2, nintLog=12)
abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4))
## lower.tail=TRUE (w/ log.p=TRUE) works "the same" for x < 0:
x <- - 2^seq(0, 30, by = 1/64)
## ==
px <- cbind(
lQ = pnorm (x, lower.tail=TRUE, log.p=TRUE)
, a0 = log1mexp(- dnorm(-x, log=TRUE))
, a1 = log1mexp(-(dnorm(-x, log=TRUE) - log(-x)))
, Lo = log1mexp(-pnormL_LD10(-x, lower.tail=TRUE, log.p=TRUE))
, Up = log1mexp(-pnormU_S53 (-x, lower.tail=TRUE, log.p=TRUE)) )
matplot(-x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x",
ylim = c(-1,1)/2^8, col=col4) ; doLegTit()
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.