qbetaAppr: Compute (Approximate) Quantiles of the Beta Distribution

qbetaApprR Documentation

Compute (Approximate) Quantiles of the Beta Distribution

Description

Compute quantiles (inverse distribution values) of the beta distribution, using diverse approximations.

Usage


qbetaAppr.1(a, p, q, lower.tail=TRUE, log.p=FALSE,
            y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p))

qbetaAppr.2(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q))
qbetaAppr.3(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q))
qbetaAppr.4(a, p, q, lower.tail=TRUE, log.p=FALSE,
            y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p),
            verbose = getOption("verbose"))

qbetaAppr  (a, p, q, lower.tail=TRUE, log.p=FALSE,
            y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p),
            logbeta = lbeta(p,q),
            verbose = getOption("verbose") && length(a) == 1)

qbeta.R    (alpha, p, q,
            lower.tail = TRUE, log.p = FALSE,
	    logbeta = lbeta(p,q),
	    low.bnd = 3e-308, up.bnd = 1-2.22e-16,
            method = c("AS109", "Newton-log"),
            tol.outer = 1e-15,
	    f.acu = function(a,p,q) max(1e-300, 10^(-13- 2.5/pp^2 - .5/a^2)),
	    fpu = .Machine$ double.xmin,
	    qnormU.fun = function(u, lu) qnormUappr(p=u, lp=lu)
          , R.pre.2014 = FALSE
	  , verbose = getOption("verbose")
          , non.finite.report = verbose
           )

Arguments

a, alpha

vector of probabilities (otherwise, e.g., in qbeta(), called p).

p, q

the two shape parameters of the beta distribution; otherwise, e.g., in qbeta(), called shape1 and shape2.

y

an approximation to \Phi^{-1}(1-\alpha) (aka z_{1-\alpha}) where \Phi(x) is the standard normal cumulative probability function and \Phi{-1}(x) its inverse, i.e., R's qnorm(x).

lower.tail, log.p

logical, see, e.g., qchisq(); must have length 1.

logbeta

must be lbeta(p,q); mainly an option to pass a value already computed.

verbose

logical or integer indicating if and how much “monitoring” information should be produced by the algorithm.

low.bnd, up.bnd

lower and upper bounds for ...TODO...

method

a string specifying the approximation method to be used.

tol.outer

the “outer loop” convergence tolerance; the default 1e-15 has been hardwired in R's qbeta().

f.acu

a function with arguments (a,p,q) ...TODO...

fpu

a very small positive number.

qnormU.fun

a function with arguments (u,lu) to compute “the same” as qnormUappr(), the upper standard normal quantile.

R.pre.2014

a logical ... TODO ...

non.finite.report

logical indicating if during the “outer loop” refining iterations, if y becomes non finite and the iterations have to stop, it should be reported (before the current best value is returned).

Value

...

Author(s)

The R Core Team for the C version of qbeta in R's sources; Martin Maechler for the R port, and the approximations.

See Also

qbeta.

Examples

 qbeta.R(0.6, 2, 3) # 0.4445
 qbeta.R(0.6, 2, 3) - qbeta(0.6, 2,3) # almost 0

 qbetaRV <- Vectorize(qbeta.R, "alpha") # now can use
 curve(qbetaRV(x, 1.5, 2.5))
 curve(qbeta  (x, 1.5, 2.5), add=TRUE, lwd = 3, col = adjustcolor("red", 1/2))

 ## an example of disagreement (and doubt, as borderline, close to underflow):
 qbeta.R(0.5078, .01, 5) # ->  2.77558e-15    # but
 qbeta  (0.5078, .01, 5) # now gives 4.651188e-31  -- correctly!
 qbeta  (0.5078, .01, 5, ncp=0)# ditto
 ## which is because qbeta() now works in log-x scale here:
 curve(pbeta(x, .01, 5), 1e-40, 1, n=10001, log="x", xaxt="n")
 sfsmisc::eaxis(1); abline(h=.5078, lty=3); abline(v=4.651188e-31,col=2)

DPQ documentation built on Sept. 11, 2024, 8:37 p.m.