Functions to perform inference via simulation from the posterior distributions for Bayesian nonparametric and semiparametric models. Although the name of the package was motivated by the Dirichlet Process prior, the package considers and will consider other priors on functional spaces. So far, DPpackage includes models considering Dirichlet Processes, Dependent Dirichlet Processes, Dependent Poisson Dirichlet Processes, Hierarchical Dirichlet Processes, Polya Trees, Linear Dependent Tailfree Processes, Mixtures of Triangular distributions, Random Bernstein polynomials priors and Dependent Bernstein Polynomials. The package also includes models considering Penalized BSplines. Includes semiparametric models for marginal and conditional density estimation, ROC curve analysis, interval censored data, binary regression models, generalized linear mixed models, IRT type models, and generalized additive models. Also contains functions to compute PseudoBayes factors for model comparison, and to elicitate the precision parameter of the Dirichlet Process. To maximize computational efficiency, the actual sampling for each model is done in compiled FORTRAN. The functions return objects which can be subsequently analyzed with functions provided in the 'coda' package.
Package details 


Author  Alejandro Jara [aut, cre], Timothy Hanson [ctb], Fernando Quintana [ctb], Peter Mueller [ctb], Gary Rosner [ctb] 
Date of publication  20171205 11:54:46 UTC 
Maintainer  ORPHANED 
License  GPL (>= 2) 
Version  1.17.1 
URL  http://www.mat.puc.cl/~ajara 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.