Nothing
PrecisionAndRecall <- function(Data, pData, NeighborhoodSize = 20){
# PrecisionAndRecall(Data, pData, NeighborhoodSize)
# Compares the projection in pData with the original data in Data
# and calculates the smoothed recall and smooted precision.
#
# INPUT
# Data Matrix of original data
# pData Matrix of projected data
# NeighborhoodSize Sets the 'effective number of neighbors' used
# to control the width of the Gaussian, NeRV paper Seite 463 setzt Default auf 20
#
# OUTPUT
# smoothed recall and smoothed precision
#
# AUTOR
# FP
if(!is.matrix(Data))
stop("Data must be a matrix")
if(!is.matrix(pData))
stop("pData must be a matrix")
if(NeighborhoodSize %% 1 != 0 || length(NeighborhoodSize) != 1 || NeighborhoodSize < 0)
stop("NeighborhoodSize must be a single natural number")
if(dim(Data)[1] == dim(pData)[1])
return(ProjectionBasedClustering::KLMeasure(Data,pData,NeighborhoodSize))
#return(c_klmeasure(Data,pData,NeighborhoodSize))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.