summary.dsspMod | R Documentation |
dsspMod
modelSummarise a dsspMod
model
## S3 method for class 'dsspMod' summary(object, prob = 0.95, robust = FALSE, mc_se = FALSE, ...)
object |
an object of class |
prob |
the desired probability to be covered by the credible intervals. The default is 0.95. |
robust |
whether or not to use the median (rather than the mean) to
calculate the estimates that summarise the posterior.
Default to |
mc_se |
whether or not to include the uncertainty in |
... |
additional arguments which are ignored. |
An object of class "dsspModsummary". Provides a summary of the the Direct Sampling Spatial Prior (DSSP) model. Includes details of the formula used to fit the model, and a summary of the model (eta, delta) and the covariates.
library(sp) library(gstat) data(meuse.all) coordinates(meuse.all) <- ~ x + y f <- function(x) -x ## log-prior for exponential distribution for the smoothing parameter ## Draw 100 samples from the posterior of eta given the data y. OUTPUT <- DSSP( formula = log(zinc) ~ 1, data = meuse.all, N = 100, pars = c(0.001, 0.001), log_prior = f ) summary(OUTPUT)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.