Cramer | R Documentation |
Performs Two-Sample Cramér Test (Baringhaus and Franz, 2004). The implementation here uses the cramer.test
implementation from the cramer package.
Cramer(X1, X2, n.perm = 0, just.statistic = (n.perm <= 0), sim = "ordinary",
maxM = 2^14, K = 160, seed = 42)
X1 |
First dataset as matrix or data.frame |
X2 |
Second dataset as matrix or data.frame |
n.perm |
Number of permutations for permutation or Bootstrap test, respectively (default: 0, no permutation test performed) |
just.statistic |
Should only the test statistic be calculated without performing any test (default: |
sim |
Type of Bootstrap or eigenvalue method for testing. Possible options are |
maxM |
Maximum number of points used for fast Fourier transform involved in eigenvalue method for approximating the null distribution (default: |
K |
Upper value up to which the integral for calculating the distribution function from the characteristic function is evaluated (default: 160). Note: when |
seed |
Random seed (default: 42) |
The Cramér test (Baringhaus and Franz, 2004) is a specialcase of the test of Bahrinhaus and Franz (2010) where the kernel function \phi
is set to
\phi_{\text{Cramer}}(x) = \sqrt{x} / 2
and can be recommended for location alternatives. The test statistic simplifies to
T_{n_1, n_2} = \frac{n_1 n_2}{n_1+n_2}\left(\frac{1}{n_1 n_2}\sum_{i=1}^{n_1}\sum_{j=1}^{n_2} ||X_{1i} - X_{2j}|| - \frac{1}{2n_1^2}\sum_{i,j=1}^{n_1} ||X_{1i} - X_{1j}|| - \frac{1}{2n_2^2}\sum_{i,j=1}^{n_2} ||X_{2i} - X_{2j}||\right).
This is equal to the Energy statistic (Székely and Rizzo, 2004).
The theoretical statistic underlying this test statistic is zero if and only if the distributions coincide. Therefore, low values of the test statistic incidate similarity of the datasets while high values indicate differences between the datasets.
This implementation is a wrapper function around the function cramer.test
that modifies the in- and output of that function to match the other functions provided in this package. For more details see the cramer.test
.
An object of class htest
with the following components:
method |
Description of the test |
d |
Number of variables in each dataset |
m |
Sample size of first dataset |
n |
Sample size of second dataset |
statistic |
Observed value of the test statistic |
p.value |
Boostrap/ permutation p value (only if |
sim |
Type of Boostrap or eigenvalue method (only if |
n.perm |
Number of permutations for permutation or Boostrap test |
hypdist |
Distribution function under the null hypothesis reconstructed via fast Fourier transform. |
ev |
Eigenvalues and eigenfunctions when using the eigenvalue method (only if |
data.name |
The dataset names |
alternative |
The alternative hypothesis |
Target variable? | Numeric? | Categorical? | K-sample? |
No | Yes | No | No |
The Cramér test (Baringhaus and Franz, 2004) is equivalent to the test based on the Energy statistic (Székely and Rizzo, 2004).
Baringhaus, L. and Franz, C. (2010). Rigid motion invariant two-sample tests, Statistica Sinica 20, 1333-1361
Bahr, R. (1996). Ein neuer Test fuer das mehrdimensionale Zwei-Stichproben-Problem bei allgemeiner Alternative, German, Ph.D. thesis, University of Hanover
Franz, C. (2024). cramer: Multivariate Nonparametric Cramer-Test for the Two-Sample-Problem. R package version 0.9-4, https://CRAN.R-project.org/package=cramer.
Stolte, M., Kappenberg, F., Rahnenführer, J., Bommert, A. (2024). Methods for quantifying dataset similarity: a review, taxonomy and comparison. Statist. Surv. 18, 163 - 298. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/24-SS149")}
Energy
, Bahr
, BF
# Draw some data
X1 <- matrix(rnorm(1000), ncol = 10)
X2 <- matrix(rnorm(1000, mean = 0.5), ncol = 10)
# Perform Cramer test
if(requireNamespace("cramer", quietly = TRUE)) {
Cramer(X1, X2, n.perm = 100)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.