fit.davies.p: Fits and plots Davies distributions to datasets

Description Usage Arguments Value Author(s) See Also Examples

Description

A newbie wrapper (and pretty-printer) for maximum.likelihood() and least.squares(). Draws an empirical quantile function (fit.davies.p()) or PDF (fit.davies.q()) and the dataset

Usage

1
2
fit.davies.p(x , print.fit=FALSE, use.q=TRUE , params=NULL, small=1e-5 , ...)
fit.davies.q(x , print.fit=FALSE, use.q=TRUE , params=NULL, ...)

Arguments

x

dataset to be fitted and plotted

print.fit

Boolean with TRUE meaning print details of the fit

use.q

Boolean with TRUE meaning use least.squares() (rather than maximum.likelihood())

params

three-element vector holding the three parameters of the davies dataset. If NULL, determine the parameters using the method indicated by use.q

small

small positive number showing range of quantiles to plot

...

Additional parameters passed to plot()

Value

If print.fit is TRUE, return the optimal parameters

Author(s)

Robin K. S. Hankin

See Also

least.squares , maximum.likelihood

Examples

1
2
3
4
5

Davies documentation built on May 29, 2017, 3:20 p.m.

Related to fit.davies.p in Davies...