| dataRWAR | R Documentation |
Generate a Realization from the RWAR model (check the references for further details).
y_t = \mu_t + \epsilon_t
where
\mu_t = \mu_{t-1} + \eta_t + \delta_t, \quad \eta_t \sim N(0, \sigma_\eta^2), \ \delta_t \ \in R
and
\epsilon_t = \phi \epsilon_{t-1} + \nu_t \quad \nu_t \sim N(0, \sigma_\nu^2)
dataRWAR(
n = 1000,
sdEta = 0,
sdNu = 1,
phi = 0,
type = c("none", "up", "updown", "rand1"),
nbSeg = 20,
jumpSize = 1
)
n |
The length of the sequence of observations. |
sdEta |
The standard deviation of the Random Walk Component on the signal drift |
sdNu |
The standard deviation of the Autocorrelated noise |
phi |
The autocorrelation parameter |
type |
Possible change scenarios for the jump structure (default: |
nbSeg |
Number of segments |
jumpSize |
Maximum magnitude of a change |
A list containing:
ythe data sequence,
signalthe underlying signal without the superimposed AR(1) noise,
changepointsthe changepoint locations
Romano, G., Rigaill, G., Runge, V., Fearnhead, P. Detecting Abrupt Changes in the Presence of Local Fluctuations and Autocorrelated Noise. arXiv preprint https://arxiv.org/abs/2005.01379 (2020).
library(ggplot2)
set.seed(42)
Y = dataRWAR(n = 1e3, phi = .5, sdEta = 3, sdNu = 1, jumpSize = 15, type = "updown", nbSeg = 5)
y = Y$y
ggplot(data.frame(t = 1:length(y), y), aes(x = t, y = y)) +
geom_point() +
geom_vline(xintercept = Y$changepoints, col = 4, lty = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.