Nothing
##' Kriging-based optimization methods for computer experiments
##'
##' Sequential and parallel Kriging-based optimization methods relying on
##' expected improvement criteria.
##'
##' \tabular{ll}{ Package: \tab DiceOptim\cr Type: \tab Package\cr Version:
##' \tab 2.0 \cr Date: \tab July 2016\cr License: \tab GPL-2 | GPL-3\cr }
##'
##' @name DiceOptim-package
##' @aliases DiceOptim-package DiceOptim
##' @docType package
##' @note This work is a follow-up of DiceOptim 1.0, which was produced within
##' the frame of the DICE (Deep Inside Computer Experiments) Consortium between
##' ARMINES, Renault, EDF, IRSN, ONERA and TOTAL S.A.
##'
##' The authors would like to thank Yves Deville for his precious advice in R
##' programming and packaging, as well as the DICE members for useful
##' feedbacks, and especially Yann Richet (IRSN) for numerous discussions
##' concerning the user-friendliness of this package.
##'
##' Package \code{rgenoud} >=5.3.3. is recommended.
##'
##' Important functions or methods: \tabular{ll}{ \code{EGO.nsteps} \tab Standard Efficient Global Optimization algorithm with a fixed number of iterations (nsteps) \cr
##' \tab---with model updates including re-estimation of covariance hyperparameters \cr
##'
##' \code{EI} \tab Expected Improvement criterion (single infill point, noise-free, constraint free problems)\cr
##'
##' \code{max_EI} \tab Maximization of the EI criterion. No need to specify any objective function \cr
##'
##' \code{qEI.nsteps} \tab EGO algorithm with batch-sequential (parallel) infill strategy \cr
##'
##' \code{noisy.optimizer} \tab EGO algorithm for noisy objective functions \cr
##'
##' \code{EGO.cst} \tab EGO algorithm for (non-linear) constrained problems \cr
##'
##'\code{easyEGO.cst} \tab User-friendly wrapper for \code{EGO.cst}}
##'
##' @author Victor Picheny (INRA, Castanet-Tolosan, France)
##'
##' David Ginsbourger (Idiap Research Institute and University of Bern, Switzerland)
##'
##' Olivier Roustant (Mines Saint-Etienne, France).
##'
##' with contributions by M. Binois, C. Chevalier, S. Marmin and T. Wagner
##' @references N.A.C. Cressie (1993), \emph{Statistics for spatial data},
##' Wiley series in probability and mathematical statistics.
##'
##' D. Ginsbourger (2009), \emph{Multiples metamodeles pour l'approximation et
##' l'optimisation de fonctions numeriques multivariables}, Ph.D. thesis, Ecole
##' Nationale Superieure des Mines de Saint-Etienne, 2009.
##' \url{https://tel.archives-ouvertes.fr/tel-00772384}
##'
##' D. Ginsbourger, R. Le Riche, and L. Carraro (2010), chapter "Kriging is
##' well-suited to parallelize optimization", in \emph{Computational
##' Intelligence in Expensive Optimization Problems}, Studies in Evolutionary
##' Learning and Optimization, Springer.
##'
##' D.R. Jones (2001), A taxonomy of global optimization methods based on
##' response surfaces, \emph{Journal of Global Optimization}, 21, 345-383.
##'
##' D.R. Jones, M. Schonlau, and W.J. Welch (1998), Efficient global
##' optimization of expensive black-box functions, \emph{Journal of Global
##' Optimization}, 13, 455-492.
##'
##' W.R. Jr. Mebane and J.S. Sekhon (2011), Genetic optimization
##' using derivatives: The rgenoud package for R, \emph{Journal of Statistical
##' Software}, \bold{51}(1), 1-55, \url{https://www.jstatsoft.org/v51/i01/}.
##'
##' J. Mockus (1988), \emph{Bayesian Approach to Global Optimization}. Kluwer
##' academic publishers.
##'
##' V. Picheny and D. Ginsbourger (2013), Noisy kriging-based optimization
##' methods: A unified implementation within the DiceOptim package,
##' \emph{Computational Statistics & Data Analysis}, 71, 1035-1053.
##'
##' C.E. Rasmussen and C.K.I. Williams (2006), \emph{Gaussian Processes for
##' Machine Learning}, the MIT Press, \url{http://www.gaussianprocess.org/gpml/}
##'
##' B.D. Ripley (1987), \emph{Stochastic Simulation}, Wiley.
##'
##' O. Roustant, D. Ginsbourger and Yves Deville (2012), DiceKriging,
##' DiceOptim: Two R Packages for the Analysis of Computer Experiments by
##' Kriging-Based Metamodeling and Optimization, \emph{Journal of Statistical
##' Software}, \bold{42}(11), 1--26, \url{https://www.jstatsoft.org/article/view/v042i11}.
##'
##' T.J. Santner, B.J. Williams, and W.J. Notz (2003), \emph{The design and
##' analysis of computer experiments}, Springer.
##'
##' M. Schonlau (1997), \emph{Computer experiments and global optimization},
##' Ph.D. thesis, University of Waterloo.
##' @examples
##'
##' set.seed(123)
##' \donttest{
##' ###############################################################
##' ### 2D optimization USING EGO.nsteps and qEGO.nsteps ########
##' ###############################################################
##'
##' # a 9-points factorial design, and the corresponding response
##' d <- 2
##' n <- 9
##' design.fact <- expand.grid(seq(0,1,length=3), seq(0,1,length=3))
##' names(design.fact)<-c("x1", "x2")
##' design.fact <- data.frame(design.fact)
##' names(design.fact)<-c("x1", "x2")
##' response.branin <- data.frame(apply(design.fact, 1, branin))
##' names(response.branin) <- "y"
##'
##' # model identification
##' fitted.model1 <- km(~1, design=design.fact, response=response.branin,
##' covtype="gauss", control=list(pop.size=50,trace=FALSE), parinit=c(0.5, 0.5))
##'
##' ### EGO, 5 steps ##################
##' library(rgenoud)
##' nsteps <- 5
##' lower <- rep(0,d)
##' upper <- rep(1,d)
##' oEGO <- EGO.nsteps(model=fitted.model1, fun=branin, nsteps=nsteps,
##' lower=lower, upper=upper, control=list(pop.size=20, BFGSburnin=2))
##' print(oEGO$par)
##' print(oEGO$value)
##'
##' # graphics
##' n.grid <- 15
##' x.grid <- y.grid <- seq(0,1,length=n.grid)
##' design.grid <- expand.grid(x.grid, y.grid)
##' response.grid <- apply(design.grid, 1, branin)
##' z.grid <- matrix(response.grid, n.grid, n.grid)
##' contour(x.grid, y.grid, z.grid, 40)
##' title("EGO")
##' points(design.fact[,1], design.fact[,2], pch=17, col="blue")
##' points(oEGO$par, pch=19, col="red")
##' text(oEGO$par[,1], oEGO$par[,2], labels=1:nsteps, pos=3)
##'
##' ### Parallel EGO, 3 steps with batches of 3 ##############
##' nsteps <- 3
##' lower <- rep(0,d)
##' upper <- rep(1,d)
##' npoints <- 3 # The batchsize
##' oEGO <- qEGO.nsteps(model = fitted.model1, branin, npoints = npoints, nsteps = nsteps,
##' crit="exact", lower, upper, optimcontrol = NULL)
##' print(oEGO$par)
##' print(oEGO$value)
##'
##' # graphics
##' contour(x.grid, y.grid, z.grid, 40)
##' title("qEGO")
##' points(design.fact[,1], design.fact[,2], pch=17, col="blue")
##' points(oEGO$par, pch=19, col="red")
##' text(oEGO$par[,1], oEGO$par[,2], labels=c(tcrossprod(rep(1,npoints),1:nsteps)), pos=3)
##'
##' ##########################################################################
##' ### 2D OPTIMIZATION, NOISY OBJECTIVE ###
##' ##########################################################################
##'
##' set.seed(10)
##' library(DiceDesign)
##' # Set test problem parameters
##' doe.size <- 9
##' dim <- 2
##' test.function <- get("branin2")
##' lower <- rep(0,1,dim)
##' upper <- rep(1,1,dim)
##' noise.var <- 0.1
##'
##' # Build noisy simulator
##' funnoise <- function(x)
##' { f.new <- test.function(x) + sqrt(noise.var)*rnorm(n=1)
##' return(f.new)}
##'
##' # Generate DOE and response
##' doe <- as.data.frame(lhsDesign(doe.size, dim)$design)
##' y.tilde <- funnoise(doe)
##'
##' # Create kriging model
##' model <- km(y~1, design=doe, response=data.frame(y=y.tilde),
##' covtype="gauss", noise.var=rep(noise.var,1,doe.size),
##' lower=rep(.1,dim), upper=rep(1,dim), control=list(trace=FALSE))
##'
##' # Optimisation with noisy.optimizer
##' optim.param <- list()
##' optim.param$quantile <- .7
##' optim.result <- noisy.optimizer(optim.crit="EQI", optim.param=optim.param, model=model,
##' n.ite=5, noise.var=noise.var, funnoise=funnoise, lower=lower, upper=upper,
##' NoiseReEstimate=FALSE, CovReEstimate=FALSE)
##'
##' print(optim.result$best.x)
##'
##' ##########################################################################
##' ### 2D OPTIMIZATION, 2 INEQUALITY CONSTRAINTS ###
##' ##########################################################################
##' set.seed(25468)
##' library(DiceDesign)
##'
##' fun <- goldsteinprice
##' fun1.cst <- function(x){return(-branin(x) + 25)}
##' fun2.cst <- function(x){return(3/2 - x[1] - 2*x[2] - .5*sin(2*pi*(x[1]^2 - 2*x[2])))}
##' constraint <- function(x){return(c(fun1.cst(x), fun2.cst(x)))}
##'
##' lower <- rep(0, 2)
##' upper <- rep(1, 2)
##'
##' ## Optimization using the Expected Feasible Improvement criterion
##' res <- easyEGO.cst(fun=fun, constraint=constraint, n.cst=2, lower=lower, upper=upper, budget=10,
##' control=list(method="EFI", inneroptim="genoud", maxit=20))
##'
##' cat("best design found:", res$par, "\n")
##' cat("corresponding objective and constraints:", res$value, "\n")
##'
##' # Objective function in colour, constraint boundaries in red
##' # Initial DoE: white circles, added points: blue crosses, best solution: red cross
##'
##' n.grid <- 15
##' test.grid <- expand.grid(X1 = seq(0, 1, length.out = n.grid), X2 = seq(0, 1, length.out = n.grid))
##' obj.grid <- apply(test.grid, 1, fun)
##' cst1.grid <- apply(test.grid, 1, fun1.cst)
##' cst2.grid <- apply(test.grid, 1, fun2.cst)
##' filled.contour(seq(0, 1, length.out = n.grid), seq(0, 1, length.out = n.grid), nlevels = 50,
##' matrix(obj.grid, n.grid), main = "Two inequality constraints",
##' xlab = expression(x[1]), ylab = expression(x[2]), color = terrain.colors,
##' plot.axes = {axis(1); axis(2);
##' contour(seq(0, 1, length.out = n.grid), seq(0, 1, length.out = n.grid),
##' matrix(cst1.grid, n.grid), level = 0, add=TRUE,
##' drawlabels=FALSE, lwd=1.5, col = "red")
##' contour(seq(0, 1, length.out = n.grid), seq(0, 1, length.out = n.grid),
##' matrix(cst2.grid, n.grid), level = 0, add=TRUE,drawlabels=FALSE,
##' lwd=1.5, col = "red")
##' points(res$history$X, col = "blue", pch = 4, lwd = 2)
##' points(res$par[1], res$par[2], col = "red", pch = 4, lwd = 2, cex=2)
##' }
##' )}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.