| Unif | R Documentation |
Uniform distribution with min a and max b.
expValUnif(min = 0, max = 1)
varUnif(min = 0, max = 1)
kthMomentUnif(k, min = 0, max = 1)
expValLimUnif(d, min = 0, max = 1)
expValTruncUnif(d, min = 0, max = 1, less.than.d = TRUE)
stopLossUnif(d, min = 0, max = 1)
meanExcessUnif(d, min = 0, max = 1)
VatRUnif(kap, min = 0, max = 1)
TVatRUnif(kap, min = 0, max = 1)
mgfUnif(t, min = 0, max = 1)
min, max |
lower and upper limits of the distribution. Must be finite. |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
The (continuous) uniform distribution with min and max parameters a
and b respectively has density:
f(x) = \frac{1}{b - a} \times \bm{1}_{\{x \in [a, b] \}}
for x \in [a, b].
Function :
expValUnif gives the expected value.
varUnif gives the variance.
kthMomentUnif gives the kth moment.
expValLimUnif gives the limited mean.
expValTruncUnif gives the truncated mean.
stopLossUnif gives the stop-loss.
meanExcessUnif gives the mean excess loss.
VatRUnif gives the Value-at-Risk.
TVatRUnif gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
expValUnif(min = 3, max = 4)
varUnif(min = 3, max = 4)
kthMomentUnif(k = 2, min = 3, max = 4)
expValLimUnif(d = 3, min = 2, max = 4)
expValTruncUnif(d = 3, min = 2, max = 4)
# Values greather than d
expValTruncUnif(d = 3, min = 2, max = 4, less.than.d = FALSE)
stopLossUnif(d = 3, min = 2, max = 4)
meanExcessUnif(d = 2, min = 2, max = 4)
VatRUnif(kap = .99, min = 3, max = 4)
TVatRUnif(kap = .99, min = 3, max = 4)
mgfUnif(t = 2, min = 0, max = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.