# fac.design: Function for full factorial designs In DoE.base: Full Factorials, Orthogonal Arrays and Base Utilities for DoE Packages

## Description

Function for creating full factorial designs with arbitrary numbers of levels, and potentially with blocking

## Usage

 ```1 2 3 4``` ```fac.design(nlevels=NULL, nfactors=NULL, factor.names = NULL, replications=1, repeat.only = FALSE, randomize=TRUE, seed=NULL, blocks=1, block.gen=NULL, block.name="Blocks", bbreps=replications, wbreps=1, block.old.behavior=FALSE) ```

## Arguments

 `nlevels` number(s) of levels, vector with `nfactors` entries or single number; can be omitted, if obvious from `factor.names` `nfactors` number of factors, can be omitted if obvious from entries `nlevels` or `factor.names` `factor.names` if `nlevels` is given, `factor.names` can be a character vector of factor names. In this case, default factor levels are the numbers from 1 to the number of levels for each factor. Otherwise it must be a list of vectors with factor levels. If the list is named, list names represent factor names, otherwise default factor names are used. Default factor names are the first elements of the character vector `Letters`, or the factors position numbers preceded by capital F in case of more than 50 factors. If both `nlevels` and factor.names are given, they must be compatible. `replications` positive integer number. Default 1 (i.e. each row just once). If larger, each design run is executed replication times. If `repeat.only`, repeated measurements are carried out directly in sequence, i.e. no true replication takes place, and all the repeat runs are conducted together. It is likely that the error variation generated by such a procedure will be too small, so that average values should be analyzed for an unreplicated design. Otherwise (default), the full experiment is first carried out once, then for the second replication and so forth. In case of randomization, each such blocks is randomized separately. In this case, replication variance is more likely suitable for usage as error variance (unless e.g. the same parts are used for replication runs although build variation is important). `repeat.only` logical, relevant only if replications > 1. If `TRUE`, replications of each run are grouped together (repeated measurement rather than true replication). The default is `repeat.only=FALSE`, i.e. the complete experiment is conducted in `replications` blocks, and each run occurs in each block. `randomize` logical. If `TRUE`, the design is randomized. This is the default. In case of replications, the nature of randomization depends on the setting of option `repeat.only`. `seed` optional seed for the randomization process (integer number) `blocks` is the number of blocks into which the experiment is to be subdivided; it must be a prime or a product of prime numbers which occur as common divisors of the numbers of levels of several factors (cf. Details section). If the experiment is randomized, randomization happens within blocks. `block.gen` provides block generating information. Only specify `block.gen`, if `blocks`>1. If `blocks` is a prime or a power of 2 (up to 2^8) or 3 (up to 3^5) or a product of powers of 2, 3, and an individual other prime, `block.gen` is not needed (but can be optionally specified). If given, `block.gen` can be a numeric vector of integer numbers that will be treated as a one-row matrix OR a numeric matrix with integer elements. There must be a row for each prime number into which `blocks` factorizes, and a column for each (pseudo)factor into which the experimental design factors can be partitioned (cf. Details and Examples sections and function `factorize`). Rows for a p-level contributor to the block factor (p a prime) consist of entries 0 to p-1 only. `block.name` name of the block factor, default “Blocks” `bbreps` between block replications; these are always taken as genuine replications, not repeat runs; default: equal to `replications`; CAUTION: you should not modify `bbreps` if you do not work with blocks, because the program code uses it instead of `replications` in some places `wbreps` within block replications; whether or not these are taken as genuine replications depends on the setting of `repeat.only` `block.old.behavior` logical that can be used to activate the old (prior to version 0.27) behavior of blocking full factorial designs; the new behavior is the default, as it often creates designs with less severe confounding

## Details

`fac.design` creates full factorial designs, i.e. the number of runs is the product of all numbers of levels.

It is possible to subdivide the design into blocks (one hierarchy level only) by specifying an appropriate number of blocks. The method used is a generalization of the one implemented in function `conf.design` for symmetric factorials (i.e. factorials with all factors at the same prime number of levels) and related to the method described in Collings (1984, 1989); function `conf.set` from package conf.design is used for checking the confounding consequences of blocking.

Note that the number of blocks must be compatible with the factor levels; it must factor into primes that occur with high enough frequency among the pseudo-factors of the design. This statement is now explained by an example: Consider a design with five factors at 2, 2, 3, 3, 6 levels. The 6-level factor can be thought of as consisting of two pseudo-factors, a 2-level and a 3-level pseudo-factor, according to the factorization of the number 6 into the two primes 2 and 3. It is possible
to obtain two blocks by confounding the two-factor interaction of the two 2-level factors and the 2-level pseudo-factor of the 6-level factor,
or to obtain three blocks by confounding the blocking factor with the three-factor interaction of the two three-level factors and the three-level pseudo-factor of the 6-level factor,
or to get six blocks, by doing both simultaneously.
It is also possible to obtain 4 or 9 or even 36 blocks, if one is happy to confound two-factor interactions with blocks. The 36 blocks are the product of the 4 blocks from the 2-level portion with the nine blocks from the 3-level portion. For each portion separately, there is a lookup-table for blocking possibilities (`block.catlg`), for up to 128 blocks in 256 runs, or up to 81 blocks in 243 runs.

5 blocks cannot be done for the above example design. Even if there were one additional factor at 5 levels, it would still not be possible to do a number of blocks with divisor 5, because this would confound the main effect of a factor with blocks and would thus generate an error.

For any primes apart from 2 or 3, only one at a time can be handled automatically. For example, if a design has three 5-level factors, it can be automatically subdivided into 5 blocks by the option `blocks=5`. It is also possible to run the design in 25 blocks; however, as 25=5*5, this cannot be done automatically but has to be requested by specifying the `block.gen` option in addition to the `blocks` option (in this case, `block.gen=rbind(c(1,0,1),c(1,1,0))` would do the job).

## Value

`fac.design` returns a data frame of S3 class `design` with attributes attached.

The experimental factors are all stored as R factors.
For factors with 2 levels, `contr.FrF2` contrasts (-1 / +1) are used.
For factors with more than 2 numerical levels, polynomial contrasts are used (i.e. analyses will per default use orthogonal polynomials).
For factors with more than 2 categorical levels, the default contrasts are used.

For changing the contrasts, use function `change.contr`.

The `design.info` attribute of the data frame has the following elements:

type

character string “full factorial” or “full factorial.blocked”

nruns

number of runs (replications are not counted)

nfactors

number of factors

nlevels

vector with number of levels for each factor

factor.names

list named with (treatment) factor names and containing as entries vectors with coded factor levels

nblocks

for designs of type `full factorial.blocked` only;
number of blocks

block.gen

for designs of type `full factorial.blocked` only;
matrix the rows of which are the coefficients of the linear combinations that create block columns from of pseudo factors

blocksize

for designs of type `full factorial.blocked` only;
size of each block (without consideration of `wbreps`)

replication

option setting in call to `FrF2`

repeat.only

option setting in call to `FrF2`

bbreps

for designs of type `FrF2.blocked` only; number of between block replications

wbreps

for designs of type `FrF2.blocked` only; number of within block replications;
`repeat.only` indicates whether these are replications or repetitions only

randomize

option setting in call to `FrF2`

seed

option setting in call to `FrF2`

creator

call to function FrF2 (or stored menu settings, if the function has been called via the R commander plugin RcmdrPlugin.DoE)

## Note

This package is currently under intensive development. Substantial changes are to be expected in the near future.

Ulrike Groemping

## References

Collings, B.J. (1984). Generating the intrablock and interblock subgroups for confounding in general factorial experiments. Annals of Statistics 12, 1500–1509.

Collings, B.J. (1989). Quick confounding. Technometrics 31, 107–110.

See also `FrF2`, `oa.design`, `pb`, `conf.set`, `block.catlg`

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53``` ``` ## only specify level combination fac.design(nlevels=c(4,3,3,2)) ## design requested via factor.names fac.design(factor.names=list(one=c("a","b","c"), two=c(125,275), three=c("old","new"), four=c(-1,1), five=c("min","medium","max"))) ## design requested via character factor.names and nlevels ## (with a little German lesson for one two three) fac.design(factor.names=c("eins","zwei","drei"),nlevels=c(2,3,2)) ### blocking designs fac.design(nlevels=c(2,2,3,3,6), blocks=6, seed=12345) ## the same design, now unnecessarily constructed via option block.gen ## preparation: look at the numbers of levels of pseudo factors ## (in this order) unlist(factorize(c(2,2,3,3,6))) ## or, for more annotation, factorize the unblocked design factorize(fac.design(nlevels=c(2,2,3,3,6))) ## positions 1 2 5 are 2-level pseudo factors ## positions 3 4 6 are 4-level pseudo factors ## blocking with highest possible interactions G <- rbind(two=c(1,1,0,0,1,0),three=c(0,0,1,1,0,1)) plan.6blocks <- fac.design(nlevels=c(2,2,3,3,6), blocks=6, block.gen=G, seed=12345) plan.6blocks ## two blocks, default design, but unnecessarily constructed via block.gen fac.design(nlevels=c(2,2,3,3,6), blocks=2, block.gen=c(1,1,0,0,1,0), seed=12345) ## three blocks, default design, but unnecessarily constructed via block.gen fac.design(nlevels=c(2,2,3,3,6), blocks=3, block.gen=c(0,0,1,1,0,1), seed=12345) ## nine blocks ## confounding two-factor interactions cannot be avoided ## there are warnings to that effect G <- rbind(CD=c(0,0,1,1,0,0),CE2=c(0,0,1,0,0,1)) plan.9blocks <- fac.design(nlevels=c(2,2,3,3,6), blocks=9, block.gen=G, seed=12345) ## further automatic designs, not run for shortening run time ## Not run: fac.design(nlevels=c(2,2,3,3,6), blocks=4, seed=12345) fac.design(nlevels=c(2,2,3,3,6), blocks=9, seed=12345) fac.design(nlevels=c(2,2,3,3,6), blocks=36, seed=12345) fac.design(nlevels=c(3,5,6,10), blocks=15, seed=12345) ## End(Not run) ## independently check aliasing ## model with block main effects and all two-factor interactions ## 6 factors: not aliased summary(plan.6blocks) alias(lm(1:nrow(plan.6blocks)~Blocks+(A+B+C+D+E)^2,plan.6blocks)) ## 9 factors: aliased summary(plan.9blocks) alias(lm(1:nrow(plan.9blocks)~Blocks+(A+B+C+D+E)^2,plan.9blocks)) ```

### Example output

```Loading required package: grid

Attaching package: 'DoE.base'

The following objects are masked from 'package:stats':

aov, lm

The following object is masked from 'package:graphics':

plot.design

The following object is masked from 'package:base':

lengths

creating full factorial with 72 runs ...

A B C D
1  3 1 3 1
2  2 1 3 2
3  3 3 1 1
4  2 3 3 1
5  1 1 1 2
6  1 2 3 2
7  4 3 1 2
8  4 1 1 1
9  3 3 1 2
10 1 2 3 1
11 4 2 1 2
12 1 1 1 1
13 1 3 3 2
14 4 3 3 1
15 4 3 3 2
16 1 3 2 1
17 1 3 1 1
18 2 3 1 2
19 3 3 3 1
20 3 3 2 1
21 1 3 2 2
22 1 1 3 1
23 3 3 2 2
24 2 1 3 1
25 2 3 3 2
26 3 2 2 1
27 1 3 3 1
28 3 3 3 2
29 4 2 2 1
30 4 1 2 1
31 2 2 3 1
32 2 1 1 1
33 4 2 3 2
34 3 2 3 1
35 2 1 1 2
36 4 1 1 2
37 2 2 1 2
38 4 2 3 1
39 2 3 2 2
40 4 3 2 2
41 2 1 2 1
42 4 2 1 1
43 3 2 2 2
44 2 3 2 1
45 1 2 2 2
46 3 1 2 1
47 1 3 1 2
48 2 2 1 1
49 4 3 2 1
50 1 2 1 1
51 3 1 3 2
52 2 2 2 2
53 3 2 3 2
54 1 1 3 2
55 1 1 2 2
56 1 1 2 1
57 2 2 3 2
58 3 1 1 2
59 3 1 1 1
60 3 2 1 2
61 1 2 2 1
62 3 2 1 1
63 4 1 3 2
64 4 3 1 1
65 4 1 2 2
66 2 3 1 1
67 2 1 2 2
68 4 2 2 2
69 3 1 2 2
70 4 1 3 1
71 1 2 1 2
72 2 2 2 1
class=design, type= full factorial
creating full factorial with 72 runs ...

one two three four   five
1    a 125   old    1 medium
2    b 125   new    1    min
3    b 275   new   -1 medium
4    c 125   new   -1 medium
5    b 275   old   -1    max
6    c 125   new    1    max
7    a 275   old   -1    max
8    c 275   new    1    max
9    a 275   new    1 medium
10   a 125   old   -1 medium
11   c 125   new   -1    max
12   c 125   old    1    min
13   a 125   new    1    max
14   a 275   new    1    min
15   c 125   new    1 medium
16   c 125   old   -1    max
17   a 275   old    1    min
18   b 275   new   -1    max
19   a 275   old   -1 medium
20   b 275   old    1    max
21   b 275   new    1 medium
22   b 125   old    1    max
23   a 125   new    1 medium
24   b 125   new    1 medium
25   c 275   new   -1 medium
26   b 125   old    1 medium
27   a 125   old    1    min
28   b 125   old   -1 medium
29   a 275   new   -1    max
30   c 125   old    1 medium
31   c 275   old    1    min
32   b 125   new   -1    min
33   c 275   old    1    max
34   a 125   new   -1    max
35   b 125   new   -1 medium
36   b 275   old    1    min
37   c 275   new    1    min
38   a 125   new   -1 medium
39   c 125   new   -1    min
40   c 275   new    1 medium
41   c 275   old   -1 medium
42   a 275   new   -1    min
43   c 125   old   -1 medium
44   a 275   new    1    max
45   a 275   old   -1    min
46   b 275   new    1    max
47   b 275   new    1    min
48   a 125   old   -1    min
49   a 125   old   -1    max
50   a 125   old    1    max
51   a 275   old    1 medium
52   c 275   old   -1    min
53   c 275   old    1 medium
54   b 125   old   -1    min
55   c 275   old   -1    max
56   a 275   old    1    max
57   c 125   old    1    max
58   a 125   new    1    min
59   b 125   new   -1    max
60   c 275   new   -1    min
61   a 275   new   -1 medium
62   b 275   old    1 medium
63   b 125   old    1    min
64   c 125   new    1    min
65   b 275   new   -1    min
66   c 275   new   -1    max
67   b 125   new    1    max
68   a 125   new   -1    min
69   b 275   old   -1    min
70   c 125   old   -1    min
71   b 125   old   -1    max
72   b 275   old   -1 medium
class=design, type= full factorial
creating full factorial with 12 runs ...

eins zwei drei
1     2    3    1
2     1    3    1
3     2    1    1
4     2    2    2
5     1    1    1
6     1    1    2
7     2    2    1
8     1    2    1
9     2    3    2
10    1    3    2
11    1    2    2
12    2    1    2
class=design, type= full factorial
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1       1      152.1.26      1 2 2 2 1 5
2       2        39.1.8      1 1 2 1 1 2
3       3      134.1.23      1 2 1 1 3 4
4       4      177.1.29      1 1 1 3 3 5
5       5        32.1.6      1 2 2 2 3 1
6       6      180.1.30      1 2 2 3 3 5
7       7         4.1.2      1 2 2 1 1 1
8       8        24.1.4      1 2 2 3 2 1
9       9       66.1.11      1 2 1 2 3 2
10     10        29.1.5      1 1 1 2 3 1
11     11      214.1.35      1 2 1 3 3 6
12     12       81.1.13      1 1 1 3 1 3
13     13      118.1.19      1 2 1 3 1 4
14     14       84.1.14      1 2 2 3 1 3
15     15      135.1.24      1 1 2 1 3 4
16     16      187.1.32      1 1 2 2 1 6
17     17      100.1.18      1 2 2 1 3 3
18     18      186.1.31      1 2 1 2 1 6
19     19      195.1.34      1 1 2 1 2 6
20     20       59.1.10      1 1 2 3 2 2
21     21      127.1.22      1 1 2 2 2 4
22     22      215.1.36      1 1 2 3 3 6
23     23       89.1.15      1 1 1 2 2 3
24     24         1.1.1      1 1 1 1 1 1
25     25        21.1.3      1 1 1 3 2 1
26     26       97.1.17      1 1 1 1 3 3
27     27        58.1.9      1 2 1 3 2 2
28     28       92.1.16      1 2 2 2 2 3
29     29        38.1.7      1 2 1 1 1 2
30     30      149.1.25      1 1 1 2 1 5
31     31      119.1.20      1 1 2 3 1 4
32     32       67.1.12      1 1 2 2 3 2
33     33      194.1.33      1 2 1 1 2 6
34     34      160.1.28      1 2 2 1 2 5
35     35      157.1.27      1 1 1 1 2 5
36     36      126.1.21      1 2 1 2 2 4
run.no run.no.std.rp Blocks A B C D E
37     37         5.2.1      2 1 1 2 1 1
38     38      191.2.32      2 1 2 3 1 6
39     39       96.2.16      2 2 2 3 2 3
40     40      156.2.26      2 2 2 3 1 5
41     41      198.2.33      2 2 1 2 2 6
42     42       93.2.15      2 1 1 3 2 3
43     43       73.2.13      2 1 1 1 1 3
44     44        13.2.3      2 1 1 1 2 1
45     45        50.2.9      2 2 1 1 2 2
46     46       70.2.11      2 2 1 3 3 2
47     47      161.2.27      2 1 1 2 2 5
48     48      139.2.24      2 1 2 2 3 4
49     49      153.2.25      2 1 1 3 1 5
50     50        33.2.5      2 1 1 3 3 1
51     51      190.2.31      2 2 1 3 1 6
52     52       71.2.12      2 1 2 3 3 2
53     53      172.2.30      2 2 2 1 3 5
54     54        43.2.8      2 1 2 2 1 2
55     55        36.2.6      2 2 2 3 3 1
56     56      206.2.35      2 2 1 1 3 6
57     57      110.2.19      2 2 1 1 1 4
58     58      138.2.23      2 2 1 2 3 4
59     59      131.2.22      2 1 2 3 2 4
60     60      169.2.29      2 1 1 1 3 5
61     61       51.2.10      2 1 2 1 2 2
62     62        16.2.4      2 2 2 1 2 1
63     63      111.2.20      2 1 2 1 1 4
64     64      104.2.18      2 2 2 2 3 3
65     65      164.2.28      2 2 2 2 2 5
66     66      101.2.17      2 1 1 2 3 3
67     67        42.2.7      2 2 1 2 1 2
68     68      199.2.34      2 1 2 2 2 6
69     69      130.2.21      2 2 1 3 2 4
70     70         8.2.2      2 2 2 2 1 1
71     71       76.2.14      2 2 2 1 1 3
72     72      207.2.36      2 1 2 1 3 6
run.no run.no.std.rp Blocks A B C D E
73      73      122.3.21      3 2 1 1 2 4
74      74        12.3.2      3 2 2 3 1 1
75      75       62.3.11      3 2 1 1 3 2
76      76      203.3.34      3 1 2 3 2 6
77      77      176.3.30      3 2 2 2 3 5
78      78      145.3.25      3 1 1 1 1 5
79      79        46.3.7      3 2 1 3 1 2
80      80      183.3.32      3 1 2 1 1 6
81      81        25.3.5      3 1 1 1 3 1
82      82      165.3.27      3 1 1 3 2 5
83      83      108.3.18      3 2 2 3 3 3
84      84      142.3.23      3 2 1 3 3 4
85      85      114.3.19      3 2 1 2 1 4
86      86        47.3.8      3 1 2 3 1 2
87      87       88.3.16      3 2 2 1 2 3
88      88        20.3.4      3 2 2 2 2 1
89      89       85.3.15      3 1 1 1 2 3
90      90       55.3.10      3 1 2 2 2 2
91      91        28.3.6      3 2 2 1 3 1
92      92      115.3.20      3 1 2 2 1 4
93      93      105.3.17      3 1 1 3 3 3
94      94      182.3.31      3 2 1 1 1 6
95      95      168.3.28      3 2 2 3 2 5
96      96       63.3.12      3 1 2 1 3 2
97      97       80.3.14      3 2 2 2 1 3
98      98      143.3.24      3 1 2 3 3 4
99      99      173.3.29      3 1 1 2 3 5
100    100        17.3.3      3 1 1 2 2 1
101    101      202.3.33      3 2 1 3 2 6
102    102      148.3.26      3 2 2 1 1 5
103    103        54.3.9      3 2 1 2 2 2
104    104       77.3.13      3 1 1 2 1 3
105    105         9.3.1      3 1 1 3 1 1
106    106      210.3.35      3 2 1 2 3 6
107    107      211.3.36      3 1 2 2 3 6
108    108      123.3.22      3 1 2 1 2 4
run.no run.no.std.rp Blocks A B C D E
109    109      193.4.33      4 1 1 1 2 6
110    110      128.4.22      4 2 2 2 2 4
111    111      216.4.36      4 2 2 3 3 6
112    112        31.4.6      4 1 2 2 3 1
113    113         3.4.2      4 1 2 1 1 1
114    114       83.4.14      4 1 2 3 1 3
115    115      213.4.35      4 1 1 3 3 6
116    116       98.4.17      4 2 1 1 3 3
117    117      125.4.21      4 1 1 2 2 4
118    118       65.4.11      4 1 1 2 3 2
119    119       82.4.13      4 2 1 3 1 3
120    120      185.4.31      4 1 1 2 1 6
121    121      158.4.27      4 2 1 1 2 5
122    122         2.4.1      4 2 1 1 1 1
123    123      136.4.24      4 2 2 1 3 4
124    124       99.4.18      4 1 2 1 3 3
125    125      188.4.32      4 2 2 2 1 6
126    126      179.4.30      4 1 2 3 3 5
127    127      117.4.19      4 1 1 3 1 4
128    128        22.4.3      4 2 1 3 2 1
129    129      159.4.28      4 1 2 1 2 5
130    130        37.4.7      4 1 1 1 1 2
131    131        23.4.4      4 1 2 3 2 1
132    132       60.4.10      4 2 2 3 2 2
133    133      120.4.20      4 2 2 3 1 4
134    134      196.4.34      4 2 2 1 2 6
135    135      178.4.29      4 2 1 3 3 5
136    136      133.4.23      4 1 1 1 3 4
137    137       68.4.12      4 2 2 2 3 2
138    138       90.4.15      4 2 1 2 2 3
139    139        57.4.9      4 1 1 3 2 2
140    140      150.4.25      4 2 1 2 1 5
141    141       91.4.16      4 1 2 2 2 3
142    142      151.4.26      4 1 2 2 1 5
143    143        30.4.5      4 2 1 2 3 1
144    144        40.4.8      4 2 2 1 1 2
run.no run.no.std.rp Blocks A B C D E
145    145        44.5.8      5 2 2 2 1 2
146    146        49.5.9      5 1 1 1 2 2
147    147      208.5.36      5 2 2 1 3 6
148    148       95.5.16      5 1 2 3 2 3
149    149        41.5.7      5 1 1 2 1 2
150    150      129.5.21      5 1 1 3 2 4
151    151       74.5.13      5 2 1 1 1 3
152    152      192.5.32      5 2 2 3 1 6
153    153       72.5.12      5 2 2 3 3 2
154    154        34.5.5      5 2 1 3 3 1
155    155      171.5.30      5 1 2 1 3 5
156    156      162.5.27      5 2 1 2 2 5
157    157        35.5.6      5 1 2 3 3 1
158    158         7.5.2      5 1 2 2 1 1
159    159      189.5.31      5 1 1 3 1 6
160    160      140.5.24      5 2 2 2 3 4
161    161      132.5.22      5 2 2 3 2 4
162    162      170.5.29      5 2 1 1 3 5
163    163      197.5.33      5 1 1 2 2 6
164    164      200.5.34      5 2 2 2 2 6
165    165       52.5.10      5 2 2 1 2 2
166    166      103.5.18      5 1 2 2 3 3
167    167        14.5.3      5 2 1 1 2 1
168    168       75.5.14      5 1 2 1 1 3
169    169        15.5.4      5 1 2 1 2 1
170    170       94.5.15      5 2 1 3 2 3
171    171      155.5.26      5 1 2 3 1 5
172    172      102.5.17      5 2 1 2 3 3
173    173      137.5.23      5 1 1 2 3 4
174    174      163.5.28      5 1 2 2 2 5
175    175      109.5.19      5 1 1 1 1 4
176    176      154.5.25      5 2 1 3 1 5
177    177      205.5.35      5 1 1 1 3 6
178    178      112.5.20      5 2 2 1 1 4
179    179         6.5.1      5 2 1 2 1 1
180    180       69.5.11      5 1 1 3 3 2
run.no run.no.std.rp Blocks A B C D E
181    181        27.6.6      6 1 2 1 3 1
182    182      201.6.33      6 1 1 3 2 6
183    183        11.6.2      6 1 2 3 1 1
184    184      116.6.20      6 2 2 2 1 4
185    185        53.6.9      6 1 1 2 2 2
186    186      175.6.30      6 1 2 2 3 5
187    187      181.6.31      6 1 1 1 1 6
188    188      146.6.25      6 2 1 1 1 5
189    189      174.6.29      6 2 1 2 3 5
190    190       56.6.10      6 2 2 2 2 2
191    191      107.6.18      6 1 2 3 3 3
192    192      147.6.26      6 1 2 1 1 5
193    193       61.6.11      6 1 1 1 3 2
194    194        48.6.8      6 2 2 3 1 2
195    195      124.6.22      6 2 2 1 2 4
196    196        19.6.4      6 1 2 2 2 1
197    197       64.6.12      6 2 2 1 3 2
198    198      212.6.36      6 2 2 2 3 6
199    199       78.6.13      6 2 1 2 1 3
200    200      167.6.28      6 1 2 3 2 5
201    201      106.6.17      6 2 1 3 3 3
202    202       79.6.14      6 1 2 2 1 3
203    203      166.6.27      6 2 1 3 2 5
204    204      209.6.35      6 1 1 2 3 6
205    205       87.6.16      6 1 2 1 2 3
206    206      144.6.24      6 2 2 3 3 4
207    207        18.6.3      6 2 1 2 2 1
208    208        45.6.7      6 1 1 3 1 2
209    209      113.6.19      6 1 1 2 1 4
210    210       86.6.15      6 2 1 1 2 3
211    211        10.6.1      6 2 1 3 1 1
212    212      121.6.21      6 1 1 1 2 4
213    213      184.6.32      6 2 2 1 1 6
214    214      141.6.23      6 1 1 3 3 4
215    215      204.6.34      6 2 2 3 2 6
216    216        26.6.5      6 2 1 1 3 1
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
2  2  3  3 61 62
2  2  3  3  2  3
creating full factorial with 216 runs ...

A   B   C   D E.a E.b
2   2   3   3   2   3
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1       1       84.1.14      1 2 2 3 1 3
2       2      157.1.27      1 1 1 1 2 5
3       3        39.1.8      1 1 2 1 1 2
4       4        29.1.5      1 1 1 2 3 1
5       5       66.1.11      1 2 1 2 3 2
6       6      180.1.30      1 2 2 3 3 5
7       7      127.1.22      1 1 2 2 2 4
8       8      100.1.18      1 2 2 1 3 3
9       9      134.1.23      1 2 1 1 3 4
10     10      135.1.24      1 1 2 1 3 4
11     11        24.1.4      1 2 2 3 2 1
12     12       92.1.16      1 2 2 2 2 3
13     13      152.1.26      1 2 2 2 1 5
14     14      214.1.35      1 2 1 3 3 6
15     15      177.1.29      1 1 1 3 3 5
16     16         1.1.1      1 1 1 1 1 1
17     17      194.1.33      1 2 1 1 2 6
18     18      118.1.19      1 2 1 3 1 4
19     19       59.1.10      1 1 2 3 2 2
20     20      195.1.34      1 1 2 1 2 6
21     21       97.1.17      1 1 1 1 3 3
22     22      160.1.28      1 2 2 1 2 5
23     23       81.1.13      1 1 1 3 1 3
24     24       89.1.15      1 1 1 2 2 3
25     25        58.1.9      1 2 1 3 2 2
26     26        21.1.3      1 1 1 3 2 1
27     27      215.1.36      1 1 2 3 3 6
28     28      186.1.31      1 2 1 2 1 6
29     29      126.1.21      1 2 1 2 2 4
30     30      119.1.20      1 1 2 3 1 4
31     31      187.1.32      1 1 2 2 1 6
32     32        38.1.7      1 2 1 1 1 2
33     33       67.1.12      1 1 2 2 3 2
34     34      149.1.25      1 1 1 2 1 5
35     35        32.1.6      1 2 2 2 3 1
36     36         4.1.2      1 2 2 1 1 1
run.no run.no.std.rp Blocks A B C D E
37     37       96.2.16      2 2 2 3 2 3
38     38      153.2.25      2 1 1 3 1 5
39     39       70.2.11      2 2 1 3 3 2
40     40      104.2.18      2 2 2 2 3 3
41     41      169.2.29      2 1 1 1 3 5
42     42       93.2.15      2 1 1 3 2 3
43     43        42.2.7      2 2 1 2 1 2
44     44        13.2.3      2 1 1 1 2 1
45     45      199.2.34      2 1 2 2 2 6
46     46      207.2.36      2 1 2 1 3 6
47     47      138.2.23      2 2 1 2 3 4
48     48       76.2.14      2 2 2 1 1 3
49     49       71.2.12      2 1 2 3 3 2
50     50      139.2.24      2 1 2 2 3 4
51     51         8.2.2      2 2 2 2 1 1
52     52      101.2.17      2 1 1 2 3 3
53     53      198.2.33      2 2 1 2 2 6
54     54        43.2.8      2 1 2 2 1 2
55     55      156.2.26      2 2 2 3 1 5
56     56      161.2.27      2 1 1 2 2 5
57     57        33.2.5      2 1 1 3 3 1
58     58      190.2.31      2 2 1 3 1 6
59     59        16.2.4      2 2 2 1 2 1
60     60      130.2.21      2 2 1 3 2 4
61     61      191.2.32      2 1 2 3 1 6
62     62      131.2.22      2 1 2 3 2 4
63     63      172.2.30      2 2 2 1 3 5
64     64       73.2.13      2 1 1 1 1 3
65     65         5.2.1      2 1 1 2 1 1
66     66      206.2.35      2 2 1 1 3 6
67     67      111.2.20      2 1 2 1 1 4
68     68      110.2.19      2 2 1 1 1 4
69     69      164.2.28      2 2 2 2 2 5
70     70       51.2.10      2 1 2 1 2 2
71     71        36.2.6      2 2 2 3 3 1
72     72        50.2.9      2 2 1 1 2 2
run.no run.no.std.rp Blocks A B C D E
73      73      202.3.33      3 2 1 3 2 6
74      74      183.3.32      3 1 2 1 1 6
75      75      114.3.19      3 2 1 2 1 4
76      76       88.3.16      3 2 2 1 2 3
77      77      108.3.18      3 2 2 3 3 3
78      78       55.3.10      3 1 2 2 2 2
79      79        12.3.2      3 2 2 3 1 1
80      80        47.3.8      3 1 2 3 1 2
81      81      176.3.30      3 2 2 2 3 5
82      82        25.3.5      3 1 1 1 3 1
83      83       63.3.12      3 1 2 1 3 2
84      84        17.3.3      3 1 1 2 2 1
85      85      145.3.25      3 1 1 1 1 5
86      86      211.3.36      3 1 2 2 3 6
87      87      168.3.28      3 2 2 3 2 5
88      88        54.3.9      3 2 1 2 2 2
89      89        28.3.6      3 2 2 1 3 1
90      90        20.3.4      3 2 2 2 2 1
91      91      123.3.22      3 1 2 1 2 4
92      92        46.3.7      3 2 1 3 1 2
93      93         9.3.1      3 1 1 3 1 1
94      94      182.3.31      3 2 1 1 1 6
95      95       77.3.13      3 1 1 2 1 3
96      96      210.3.35      3 2 1 2 3 6
97      97      115.3.20      3 1 2 2 1 4
98      98       62.3.11      3 2 1 1 3 2
99      99      148.3.26      3 2 2 1 1 5
100    100       80.3.14      3 2 2 2 1 3
101    101       85.3.15      3 1 1 1 2 3
102    102      165.3.27      3 1 1 3 2 5
103    103      173.3.29      3 1 1 2 3 5
104    104      105.3.17      3 1 1 3 3 3
105    105      143.3.24      3 1 2 3 3 4
106    106      122.3.21      3 2 1 1 2 4
107    107      203.3.34      3 1 2 3 2 6
108    108      142.3.23      3 2 1 3 3 4
run.no run.no.std.rp Blocks A B C D E
109    109      158.4.27      4 2 1 1 2 5
110    110        37.4.7      4 1 1 1 1 2
111    111        23.4.4      4 1 2 3 2 1
112    112      133.4.23      4 1 1 1 3 4
113    113      185.4.31      4 1 1 2 1 6
114    114       91.4.16      4 1 2 2 2 3
115    115       82.4.13      4 2 1 3 1 3
116    116         2.4.1      4 2 1 1 1 1
117    117      128.4.22      4 2 2 2 2 4
118    118      178.4.29      4 2 1 3 3 5
119    119        57.4.9      4 1 1 3 2 2
120    120      216.4.36      4 2 2 3 3 6
121    121      159.4.28      4 1 2 1 2 5
122    122      188.4.32      4 2 2 2 1 6
123    123        22.4.3      4 2 1 3 2 1
124    124        30.4.5      4 2 1 2 3 1
125    125       68.4.12      4 2 2 2 3 2
126    126      179.4.30      4 1 2 3 3 5
127    127       99.4.18      4 1 2 1 3 3
128    128         3.4.2      4 1 2 1 1 1
129    129       60.4.10      4 2 2 3 2 2
130    130       65.4.11      4 1 1 2 3 2
131    131       83.4.14      4 1 2 3 1 3
132    132      213.4.35      4 1 1 3 3 6
133    133       98.4.17      4 2 1 1 3 3
134    134      125.4.21      4 1 1 2 2 4
135    135      193.4.33      4 1 1 1 2 6
136    136       90.4.15      4 2 1 2 2 3
137    137      117.4.19      4 1 1 3 1 4
138    138      196.4.34      4 2 2 1 2 6
139    139      136.4.24      4 2 2 1 3 4
140    140        31.4.6      4 1 2 2 3 1
141    141        40.4.8      4 2 2 1 1 2
142    142      120.4.20      4 2 2 3 1 4
143    143      150.4.25      4 2 1 2 1 5
144    144      151.4.26      4 1 2 2 1 5
run.no run.no.std.rp Blocks A B C D E
145    145       75.5.14      5 1 2 1 1 3
146    146        14.5.3      5 2 1 1 2 1
147    147      170.5.29      5 2 1 1 3 5
148    148        49.5.9      5 1 1 1 2 2
149    149      189.5.31      5 1 1 3 1 6
150    150        34.5.5      5 2 1 3 3 1
151    151       95.5.16      5 1 2 3 2 3
152    152      171.5.30      5 1 2 1 3 5
153    153      103.5.18      5 1 2 2 3 3
154    154      102.5.17      5 2 1 2 3 3
155    155      132.5.22      5 2 2 3 2 4
156    156       72.5.12      5 2 2 3 3 2
157    157      162.5.27      5 2 1 2 2 5
158    158        44.5.8      5 2 2 2 1 2
159    159      140.5.24      5 2 2 2 3 4
160    160      155.5.26      5 1 2 3 1 5
161    161        15.5.4      5 1 2 1 2 1
162    162       94.5.15      5 2 1 3 2 3
163    163         7.5.2      5 1 2 2 1 1
164    164      137.5.23      5 1 1 2 3 4
165    165      197.5.33      5 1 1 2 2 6
166    166        41.5.7      5 1 1 2 1 2
167    167      200.5.34      5 2 2 2 2 6
168    168      154.5.25      5 2 1 3 1 5
169    169       52.5.10      5 2 2 1 2 2
170    170      112.5.20      5 2 2 1 1 4
171    171       69.5.11      5 1 1 3 3 2
172    172      208.5.36      5 2 2 1 3 6
173    173        35.5.6      5 1 2 3 3 1
174    174      129.5.21      5 1 1 3 2 4
175    175      205.5.35      5 1 1 1 3 6
176    176      163.5.28      5 1 2 2 2 5
177    177         6.5.1      5 2 1 2 1 1
178    178      192.5.32      5 2 2 3 1 6
179    179       74.5.13      5 2 1 1 1 3
180    180      109.5.19      5 1 1 1 1 4
run.no run.no.std.rp Blocks A B C D E
181    181      175.6.30      6 1 2 2 3 5
182    182      174.6.29      6 2 1 2 3 5
183    183      184.6.32      6 2 2 1 1 6
184    184      106.6.17      6 2 1 3 3 3
185    185       78.6.13      6 2 1 2 1 3
186    186      181.6.31      6 1 1 1 1 6
187    187       87.6.16      6 1 2 1 2 3
188    188      124.6.22      6 2 2 1 2 4
189    189        11.6.2      6 1 2 3 1 1
190    190        10.6.1      6 2 1 3 1 1
191    191       79.6.14      6 1 2 2 1 3
192    192      212.6.36      6 2 2 2 3 6
193    193        26.6.5      6 2 1 1 3 1
194    194       86.6.15      6 2 1 1 2 3
195    195      146.6.25      6 2 1 1 1 5
196    196      141.6.23      6 1 1 3 3 4
197    197      201.6.33      6 1 1 3 2 6
198    198      107.6.18      6 1 2 3 3 3
199    199      166.6.27      6 2 1 3 2 5
200    200      147.6.26      6 1 2 1 1 5
201    201      121.6.21      6 1 1 1 2 4
202    202       61.6.11      6 1 1 1 3 2
203    203      204.6.34      6 2 2 3 2 6
204    204      116.6.20      6 2 2 2 1 4
205    205      209.6.35      6 1 1 2 3 6
206    206        19.6.4      6 1 2 2 2 1
207    207        53.6.9      6 1 1 2 2 2
208    208      113.6.19      6 1 1 2 1 4
209    209       56.6.10      6 2 2 2 2 2
210    210        18.6.3      6 2 1 2 2 1
211    211      167.6.28      6 1 2 3 2 5
212    212       64.6.12      6 2 2 1 3 2
213    213        45.6.7      6 1 1 3 1 2
214    214        27.6.6      6 1 2 1 3 1
215    215        48.6.8      6 2 2 3 1 2
216    216      144.6.24      6 2 2 3 3 4
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1        1       77.1.39      1 1 1 2 1 3
2        2     203.1.102      1 1 2 3 2 6
3        3      134.1.67      1 2 1 1 3 4
4        4       24.1.12      1 2 2 3 2 1
5        5      160.1.80      1 2 2 1 2 5
6        6     215.1.108      1 1 2 3 3 6
7        7     202.1.101      1 2 1 3 2 6
8        8       70.1.35      1 2 1 3 3 2
9        9       32.1.16      1 2 2 2 3 1
10      10       50.1.25      1 2 1 1 2 2
11      11      131.1.66      1 1 2 3 2 4
12      12      169.1.85      1 1 1 1 3 5
13      13      183.1.92      1 1 2 1 1 6
14      14       63.1.32      1 1 2 1 3 2
15      15      111.1.56      1 1 2 1 1 4
16      16       58.1.29      1 2 1 3 2 2
17      17      100.1.50      1 2 2 1 3 3
18      18      119.1.60      1 1 2 3 1 4
19      19       29.1.15      1 1 1 2 3 1
20      20      108.1.54      1 2 2 3 3 3
21      21       84.1.42      1 2 2 3 1 3
22      22      130.1.65      1 2 1 3 2 4
23      23       33.1.17      1 1 1 3 3 1
24      24     206.1.103      1 2 1 1 3 6
25      25       47.1.24      1 1 2 3 1 2
26      26        12.1.6      1 2 2 3 1 1
27      27       93.1.47      1 1 1 3 2 3
28      28      142.1.71      1 2 1 3 3 4
29      29         8.1.4      1 2 2 2 1 1
30      30         1.1.1      1 1 1 1 1 1
31      31     207.1.104      1 1 2 1 3 6
32      32      191.1.96      1 1 2 3 1 6
33      33       80.1.40      1 2 2 2 1 3
34      34      180.1.90      1 2 2 3 3 5
35      35      149.1.75      1 1 1 2 1 5
36      36      177.1.89      1 1 1 3 3 5
37      37      157.1.79      1 1 1 1 2 5
38      38         5.1.3      1 1 1 2 1 1
39      39      118.1.59      1 2 1 3 1 4
40      40       36.1.18      1 2 2 3 3 1
41      41      176.1.88      1 2 2 2 3 5
42      42      190.1.95      1 2 1 3 1 6
43      43      164.1.82      1 2 2 2 2 5
44      44     214.1.107      1 2 1 3 3 6
45      45      172.1.86      1 2 2 1 3 5
46      46       54.1.27      1 2 1 2 2 2
47      47      187.1.94      1 1 2 2 1 6
48      48       39.1.20      1 1 2 1 1 2
49      49      135.1.68      1 1 2 1 3 4
50      50      115.1.58      1 1 2 2 1 4
51      51       43.1.22      1 1 2 2 1 2
52      52      156.1.78      1 2 2 3 1 5
53      53       67.1.34      1 1 2 2 3 2
54      54      168.1.84      1 2 2 3 2 5
55      55      139.1.70      1 1 2 2 3 4
56      56      138.1.69      1 2 1 2 3 4
57      57        17.1.9      1 1 1 2 2 1
58      58      145.1.73      1 1 1 1 1 5
59      59      198.1.99      1 2 1 2 2 6
60      60       97.1.49      1 1 1 1 3 3
61      61      101.1.51      1 1 1 2 3 3
62      62       55.1.28      1 1 2 2 2 2
63      63       76.1.38      1 2 2 1 1 3
64      64       81.1.41      1 1 1 3 1 3
65      65       21.1.11      1 1 1 3 2 1
66      66      194.1.97      1 2 1 1 2 6
67      67       51.1.26      1 1 2 1 2 2
68      68      173.1.87      1 1 1 2 3 5
69      69      182.1.91      1 2 1 1 1 6
70      70       42.1.21      1 2 1 2 1 2
71      71      105.1.53      1 1 1 3 3 3
72      72      104.1.52      1 2 2 2 3 3
73      73      152.1.76      1 2 2 2 1 5
74      74      123.1.62      1 1 2 1 2 4
75      75       85.1.43      1 1 1 1 2 3
76      76       88.1.44      1 2 2 1 2 3
77      77      114.1.57      1 2 1 2 1 4
78      78      148.1.74      1 2 2 1 1 5
79      79       66.1.33      1 2 1 2 3 2
80      80       25.1.13      1 1 1 1 3 1
81      81       20.1.10      1 2 2 2 2 1
82      82      165.1.83      1 1 1 3 2 5
83      83         4.1.2      1 2 2 1 1 1
84      84     210.1.105      1 2 1 2 3 6
85      85        13.1.7      1 1 1 1 2 1
86      86      186.1.93      1 2 1 2 1 6
87      87       92.1.46      1 2 2 2 2 3
88      88      127.1.64      1 1 2 2 2 4
89      89       38.1.19      1 2 1 1 1 2
90      90      195.1.98      1 1 2 1 2 6
91      91       46.1.23      1 2 1 3 1 2
92      92       71.1.36      1 1 2 3 3 2
93      93       73.1.37      1 1 1 1 1 3
94      94       28.1.14      1 2 2 1 3 1
95      95      161.1.81      1 1 1 2 2 5
96      96       59.1.30      1 1 2 3 2 2
97      97       89.1.45      1 1 1 2 2 3
98      98       96.1.48      1 2 2 3 2 3
99      99      110.1.55      1 2 1 1 1 4
100    100      122.1.61      1 2 1 1 2 4
101    101      143.1.72      1 1 2 3 3 4
102    102      126.1.63      1 2 1 2 2 4
103    103     199.1.100      1 1 2 2 2 6
104    104      153.1.77      1 1 1 3 1 5
105    105        16.1.8      1 2 2 1 2 1
106    106       62.1.31      1 2 1 1 3 2
107    107         9.1.5      1 1 1 3 1 1
108    108     211.1.106      1 1 2 2 3 6
run.no run.no.std.rp Blocks A B C D E
109    109       53.2.27      2 1 1 2 2 2
110    110       37.2.19      2 1 1 1 1 2
111    111       23.2.12      2 1 2 3 2 1
112    112      188.2.94      2 2 2 2 1 6
113    113       44.2.22      2 2 2 2 1 2
114    114      103.2.52      2 1 2 2 3 3
115    115      140.2.70      2 2 2 2 3 4
116    116      141.2.71      2 1 1 3 3 4
117    117      106.2.53      2 2 1 3 3 3
118    118       91.2.46      2 1 2 2 2 3
119    119      113.2.57      2 1 1 2 1 4
120    120      158.2.79      2 2 1 1 2 5
121    121       98.2.49      2 2 1 1 3 3
122    122       86.2.43      2 2 1 1 2 3
123    123       95.2.48      2 1 2 3 2 3
124    124       99.2.50      2 1 2 1 3 3
125    125      129.2.65      2 1 1 3 2 4
126    126     208.2.104      2 2 2 1 3 6
127    127      155.2.78      2 1 2 3 1 5
128    128       87.2.44      2 1 2 1 2 3
129    129      112.2.56      2 2 2 1 1 4
130    130       61.2.31      2 1 1 1 3 2
131    131      150.2.75      2 2 1 2 1 5
132    132       82.2.41      2 2 1 3 1 3
133    133       26.2.13      2 2 1 1 3 1
134    134      121.2.61      2 1 1 1 2 4
135    135      147.2.74      2 1 2 1 1 5
136    136     216.2.108      2 2 2 3 3 6
137    137      174.2.87      2 2 1 2 3 5
138    138      167.2.84      2 1 2 3 2 5
139    139      144.2.72      2 2 2 3 3 4
140    140       75.2.38      2 1 2 1 1 3
141    141      185.2.93      2 1 1 2 1 6
142    142      102.2.51      2 2 1 2 3 3
143    143         3.2.2      2 1 2 1 1 1
144    144      189.2.95      2 1 1 3 1 6
145    145      125.2.63      2 1 1 2 2 4
146    146      196.2.98      2 2 2 1 2 6
147    147      162.2.81      2 2 1 2 2 5
148    148       68.2.34      2 2 2 2 3 2
149    149       40.2.20      2 2 2 1 1 2
150    150      109.2.55      2 1 1 1 1 4
151    151       27.2.14      2 1 2 1 3 1
152    152        14.2.7      2 2 1 1 2 1
153    153     201.2.101      2 1 1 3 2 6
154    154       72.2.36      2 2 2 3 3 2
155    155      116.2.58      2 2 2 2 1 4
156    156       83.2.42      2 1 2 3 1 3
157    157       60.2.30      2 2 2 3 2 2
158    158        18.2.9      2 2 1 2 2 1
159    159     205.2.103      2 1 1 1 3 6
160    160       64.2.32      2 2 2 1 3 2
161    161      171.2.86      2 1 2 1 3 5
162    162     212.2.106      2 2 2 2 3 6
163    163      170.2.85      2 2 1 1 3 5
164    164       35.2.18      2 1 2 3 3 1
165    165       94.2.47      2 2 1 3 2 3
166    166       57.2.29      2 1 1 3 2 2
167    167      154.2.77      2 2 1 3 1 5
168    168       56.2.28      2 2 2 2 2 2
169    169      136.2.68      2 2 2 1 3 4
170    170      137.2.69      2 1 1 2 3 4
171    171       45.2.23      2 1 1 3 1 2
172    172      192.2.96      2 2 2 3 1 6
173    173       22.2.11      2 2 1 3 2 1
174    174        10.2.5      2 2 1 3 1 1
175    175      163.2.82      2 1 2 2 2 5
176    176       69.2.35      2 1 1 3 3 2
177    177      175.2.88      2 1 2 2 3 5
178    178      166.2.83      2 2 1 3 2 5
179    179      193.2.97      2 1 1 1 2 6
180    180       34.2.17      2 2 1 3 3 1
181    181       90.2.45      2 2 1 2 2 3
182    182         2.2.1      2 2 1 1 1 1
183    183      128.2.64      2 2 2 2 2 4
184    184     200.2.100      2 2 2 2 2 6
185    185       41.2.21      2 1 1 2 1 2
186    186      181.2.91      2 1 1 1 1 6
187    187     209.2.105      2 1 1 2 3 6
188    188      151.2.76      2 1 2 2 1 5
189    189      159.2.80      2 1 2 1 2 5
190    190       48.2.24      2 2 2 3 1 2
191    191      124.2.62      2 2 2 1 2 4
192    192      120.2.60      2 2 2 3 1 4
193    193        11.2.6      2 1 2 3 1 1
194    194       19.2.10      2 1 2 2 2 1
195    195       31.2.16      2 1 2 2 3 1
196    196      132.2.66      2 2 2 3 2 4
197    197      146.2.73      2 2 1 1 1 5
198    198         7.2.4      2 1 2 2 1 1
199    199       79.2.40      2 1 2 2 1 3
200    200      179.2.90      2 1 2 3 3 5
201    201       49.2.25      2 1 1 1 2 2
202    202      117.2.59      2 1 1 3 1 4
203    203     213.2.107      2 1 1 3 3 6
204    204         6.2.3      2 2 1 2 1 1
205    205      133.2.67      2 1 1 1 3 4
206    206       78.2.39      2 2 1 2 1 3
207    207       30.2.15      2 2 1 2 3 1
208    208      184.2.92      2 2 2 1 1 6
209    209       74.2.37      2 2 1 1 1 3
210    210      107.2.54      2 1 2 3 3 3
211    211       65.2.33      2 1 1 2 3 2
212    212       52.2.26      2 2 2 1 2 2
213    213      178.2.89      2 2 1 3 3 5
214    214        15.2.8      2 1 2 1 2 1
215    215     204.2.102      2 2 2 3 2 6
216    216      197.2.99      2 1 1 2 2 6
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1       1       60.1.20      1 2 2 3 2 2
2       2       81.1.25      1 1 1 3 1 3
3       3       84.1.28      1 2 2 3 1 3
4       4       39.1.15      1 1 2 1 1 2
5       5      178.1.58      1 2 1 3 3 5
6       6      120.1.40      1 2 2 3 1 4
7       7      177.1.57      1 1 1 3 3 5
8       8        23.1.7      1 1 2 3 2 1
9       9       65.1.21      1 1 1 2 3 2
10     10      126.1.42      1 2 1 2 2 4
11     11       83.1.27      1 1 2 3 1 3
12     12      194.1.66      1 2 1 1 2 6
13     13       40.1.16      1 2 2 1 1 2
14     14      186.1.62      1 2 1 2 1 6
15     15      195.1.67      1 1 2 1 2 6
16     16      196.1.68      1 2 2 1 2 6
17     17      185.1.61      1 1 1 2 1 6
18     18        29.1.9      1 1 1 2 3 1
19     19       92.1.32      1 2 2 2 2 3
20     20      127.1.43      1 1 2 2 2 4
21     21      134.1.46      1 2 1 1 3 4
22     22      188.1.64      1 2 2 2 1 6
23     23      180.1.60      1 2 2 3 3 5
24     24       91.1.31      1 1 2 2 2 3
25     25      216.1.72      1 2 2 3 3 6
26     26       82.1.26      1 2 1 3 1 3
27     27      135.1.47      1 1 2 1 3 4
28     28      193.1.65      1 1 1 1 2 6
29     29      187.1.63      1 1 2 2 1 6
30     30       30.1.10      1 2 1 2 3 1
31     31      159.1.55      1 1 2 1 2 5
32     32      179.1.59      1 1 2 3 3 5
33     33         4.1.4      1 2 2 1 1 1
34     34      151.1.51      1 1 2 2 1 5
35     35       32.1.12      1 2 2 2 3 1
36     36      213.1.69      1 1 1 3 3 6
37     37       38.1.14      1 2 1 1 1 2
38     38         3.1.3      1 1 2 1 1 1
39     39      117.1.37      1 1 1 3 1 4
40     40      136.1.48      1 2 2 1 3 4
41     41       68.1.24      1 2 2 2 3 2
42     42      118.1.38      1 2 1 3 1 4
43     43      100.1.36      1 2 2 1 3 3
44     44       98.1.34      1 2 1 1 3 3
45     45       89.1.29      1 1 1 2 2 3
46     46      133.1.45      1 1 1 1 3 4
47     47      157.1.53      1 1 1 1 2 5
48     48      158.1.54      1 2 1 1 2 5
49     49        21.1.5      1 1 1 3 2 1
50     50        24.1.8      1 2 2 3 2 1
51     51      149.1.49      1 1 1 2 1 5
52     52         1.1.1      1 1 1 1 1 1
53     53       90.1.30      1 2 1 2 2 3
54     54      150.1.50      1 2 1 2 1 5
55     55       99.1.35      1 1 2 1 3 3
56     56       37.1.13      1 1 1 1 1 2
57     57      128.1.44      1 2 2 2 2 4
58     58       59.1.19      1 1 2 3 2 2
59     59      152.1.52      1 2 2 2 1 5
60     60         2.1.2      1 2 1 1 1 1
61     61      214.1.70      1 2 1 3 3 6
62     62       57.1.17      1 1 1 3 2 2
63     63      160.1.56      1 2 2 1 2 5
64     64      215.1.71      1 1 2 3 3 6
65     65       31.1.11      1 1 2 2 3 1
66     66       58.1.18      1 2 1 3 2 2
67     67        22.1.6      1 2 1 3 2 1
68     68       66.1.22      1 2 1 2 3 2
69     69       97.1.33      1 1 1 1 3 3
70     70      125.1.41      1 1 1 2 2 4
71     71      119.1.39      1 1 2 3 1 4
72     72       67.1.23      1 1 2 2 3 2
run.no run.no.std.rp Blocks A B C D E
73      73      153.2.49      2 1 1 3 1 5
74      74       96.2.32      2 2 2 3 2 3
75      75      208.2.72      2 2 2 1 3 6
76      76      103.2.35      2 1 2 2 3 3
77      77      139.2.47      2 1 2 2 3 4
78      78        13.2.5      2 1 1 1 2 1
79      79      189.2.61      2 1 1 3 1 6
80      80      140.2.48      2 2 2 2 3 4
81      81         5.2.1      2 1 1 2 1 1
82      82       72.2.24      2 2 2 3 3 2
83      83       76.2.28      2 2 2 1 1 3
84      84      170.2.58      2 2 1 1 3 5
85      85      172.2.60      2 2 2 1 3 5
86      86       75.2.27      2 1 2 1 1 3
87      87      138.2.46      2 2 1 2 3 4
88      88       70.2.22      2 2 1 3 3 2
89      89       71.2.23      2 1 2 3 3 2
90      90      206.2.70      2 2 1 1 3 6
91      91       69.2.21      2 1 1 3 3 2
92      92       36.2.12      2 2 2 3 3 1
93      93       73.2.25      2 1 1 1 1 3
94      94        14.2.6      2 2 1 1 2 1
95      95         7.2.3      2 1 2 2 1 1
96      96      102.2.34      2 2 1 2 3 3
97      97       74.2.26      2 2 1 1 1 3
98      98       51.2.19      2 1 2 1 2 2
99      99        33.2.9      2 1 1 3 3 1
100    100      163.2.55      2 1 2 2 2 5
101    101      155.2.51      2 1 2 3 1 5
102    102      110.2.38      2 2 1 1 1 4
103    103      129.2.41      2 1 1 3 2 4
104    104       44.2.16      2 2 2 2 1 2
105    105      104.2.36      2 2 2 2 3 3
106    106      111.2.39      2 1 2 1 1 4
107    107      200.2.68      2 2 2 2 2 6
108    108      162.2.54      2 2 1 2 2 5
109    109        16.2.8      2 2 2 1 2 1
110    110      109.2.37      2 1 1 1 1 4
111    111       93.2.29      2 1 1 3 2 3
112    112       43.2.15      2 1 2 2 1 2
113    113      199.2.67      2 1 2 2 2 6
114    114      164.2.56      2 2 2 2 2 5
115    115        15.2.7      2 1 2 1 2 1
116    116      171.2.59      2 1 2 1 3 5
117    117      191.2.63      2 1 2 3 1 6
118    118         8.2.4      2 2 2 2 1 1
119    119       41.2.13      2 1 1 2 1 2
120    120      207.2.71      2 1 2 1 3 6
121    121         6.2.2      2 2 1 2 1 1
122    122      132.2.44      2 2 2 3 2 4
123    123       94.2.30      2 2 1 3 2 3
124    124      154.2.50      2 2 1 3 1 5
125    125      161.2.53      2 1 1 2 2 5
126    126      130.2.42      2 2 1 3 2 4
127    127       49.2.17      2 1 1 1 2 2
128    128      156.2.52      2 2 2 3 1 5
129    129      192.2.64      2 2 2 3 1 6
130    130      169.2.57      2 1 1 1 3 5
131    131      198.2.66      2 2 1 2 2 6
132    132      101.2.33      2 1 1 2 3 3
133    133       52.2.20      2 2 2 1 2 2
134    134       50.2.18      2 2 1 1 2 2
135    135       34.2.10      2 2 1 3 3 1
136    136      190.2.62      2 2 1 3 1 6
137    137      112.2.40      2 2 2 1 1 4
138    138      197.2.65      2 1 1 2 2 6
139    139       42.2.14      2 2 1 2 1 2
140    140       95.2.31      2 1 2 3 2 3
141    141      205.2.69      2 1 1 1 3 6
142    142       35.2.11      2 1 2 3 3 1
143    143      137.2.45      2 1 1 2 3 4
144    144      131.2.43      2 1 2 3 2 4
run.no run.no.std.rp Blocks A B C D E
145    145      115.3.39      3 1 2 2 1 4
146    146       56.3.20      3 2 2 2 2 2
147    147      105.3.33      3 1 1 3 3 3
148    148      201.3.65      3 1 1 3 2 6
149    149       27.3.11      3 1 2 1 3 1
150    150       78.3.26      3 2 1 2 1 3
151    151        12.3.4      3 2 2 3 1 1
152    152        20.3.8      3 2 2 2 2 1
153    153      123.3.43      3 1 2 1 2 4
154    154      209.3.69      3 1 1 2 3 6
155    155        10.3.2      3 2 1 3 1 1
156    156      143.3.47      3 1 2 3 3 4
157    157       63.3.23      3 1 2 1 3 2
158    158      167.3.55      3 1 2 3 2 5
159    159       28.3.12      3 2 2 1 3 1
160    160      114.3.38      3 2 1 2 1 4
161    161      144.3.48      3 2 2 3 3 4
162    162      173.3.57      3 1 1 2 3 5
163    163      212.3.72      3 2 2 2 3 6
164    164       80.3.28      3 2 2 2 1 3
165    165         9.3.1      3 1 1 3 1 1
166    166      107.3.35      3 1 2 3 3 3
167    167      145.3.49      3 1 1 1 1 5
168    168       45.3.13      3 1 1 3 1 2
169    169      121.3.41      3 1 1 1 2 4
170    170      147.3.51      3 1 2 1 1 5
171    171      165.3.53      3 1 1 3 2 5
172    172      124.3.44      3 2 2 1 2 4
173    173      182.3.62      3 2 1 1 1 6
174    174       85.3.29      3 1 1 1 2 3
175    175       61.3.21      3 1 1 1 3 2
176    176       86.3.30      3 2 1 1 2 3
177    177        11.3.3      3 1 2 3 1 1
178    178       62.3.22      3 2 1 1 3 2
179    179        25.3.9      3 1 1 1 3 1
180    180      116.3.40      3 2 2 2 1 4
181    181      202.3.66      3 2 1 3 2 6
182    182       47.3.15      3 1 2 3 1 2
183    183       87.3.31      3 1 2 1 2 3
184    184       26.3.10      3 2 1 1 3 1
185    185      175.3.59      3 1 2 2 3 5
186    186        18.3.6      3 2 1 2 2 1
187    187      204.3.68      3 2 2 3 2 6
188    188       48.3.16      3 2 2 3 1 2
189    189      174.3.58      3 2 1 2 3 5
190    190       46.3.14      3 2 1 3 1 2
191    191       88.3.32      3 2 2 1 2 3
192    192      113.3.37      3 1 1 2 1 4
193    193      210.3.70      3 2 1 2 3 6
194    194      108.3.36      3 2 2 3 3 3
195    195      181.3.61      3 1 1 1 1 6
196    196       55.3.19      3 1 2 2 2 2
197    197       64.3.24      3 2 2 1 3 2
198    198      184.3.64      3 2 2 1 1 6
199    199        17.3.5      3 1 1 2 2 1
200    200       54.3.18      3 2 1 2 2 2
201    201      203.3.67      3 1 2 3 2 6
202    202      146.3.50      3 2 1 1 1 5
203    203      106.3.34      3 2 1 3 3 3
204    204      176.3.60      3 2 2 2 3 5
205    205      183.3.63      3 1 2 1 1 6
206    206      168.3.56      3 2 2 3 2 5
207    207      122.3.42      3 2 1 1 2 4
208    208       53.3.17      3 1 1 2 2 2
209    209        19.3.7      3 1 2 2 2 1
210    210      166.3.54      3 2 1 3 2 5
211    211      148.3.52      3 2 2 1 1 5
212    212      141.3.45      3 1 1 3 3 4
213    213      211.3.71      3 1 2 2 3 6
214    214       79.3.27      3 1 2 2 1 3
215    215      142.3.46      3 2 1 3 3 4
216    216       77.3.25      3 1 1 2 1 3
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
creating full factorial with 216 runs ...

Warning messages:
1: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, block.gen = G,  :
confounding of blocks with 2-factor interactions
2: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, block.gen = G,  :
confounding of blocks with 2-factor interactions
3: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, block.gen = G,  :
confounding of blocks with 2-factor interactions
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1       1      204.1.51      1 2 2 3 2 6
2       2      153.1.39      1 1 1 3 1 5
3       3        29.1.8      1 1 1 2 3 1
4       4      128.1.32      1 2 2 2 2 4
5       5       73.1.19      1 1 1 1 1 3
6       6      145.1.37      1 1 1 1 1 5
7       7      192.1.48      1 2 2 3 1 6
8       8       60.1.15      1 2 2 3 2 2
9       9      124.1.31      1 2 2 1 2 4
10     10      136.1.34      1 2 2 1 3 4
11     11       85.1.22      1 1 1 1 2 3
12     12      169.1.43      1 1 1 1 3 5
13     13       56.1.14      1 2 2 2 2 2
14     14      177.1.45      1 1 1 3 3 5
15     15      173.1.44      1 1 1 2 3 5
16     16      132.1.33      1 2 2 3 2 4
17     17      120.1.30      1 2 2 3 1 4
18     18         1.1.1      1 1 1 1 1 1
19     19       48.1.12      1 2 2 3 1 2
20     20        17.1.5      1 1 1 2 2 1
21     21        33.1.9      1 1 1 3 3 1
22     22      196.1.49      1 2 2 1 2 6
23     23       68.1.17      1 2 2 2 3 2
24     24       97.1.25      1 1 1 1 3 3
25     25       93.1.24      1 1 1 3 2 3
26     26       77.1.20      1 1 1 2 1 3
27     27      216.1.54      1 2 2 3 3 6
28     28      101.1.26      1 1 1 2 3 3
29     29      208.1.52      1 2 2 1 3 6
30     30       44.1.11      1 2 2 2 1 2
31     31      184.1.46      1 2 2 1 1 6
32     32      157.1.40      1 1 1 1 2 5
33     33      188.1.47      1 2 2 2 1 6
34     34      116.1.29      1 2 2 2 1 4
35     35       40.1.10      1 2 2 1 1 2
36     36       72.1.18      1 2 2 3 3 2
37     37      161.1.41      1 1 1 2 2 5
38     38       64.1.16      1 2 2 1 3 2
39     39      212.1.53      1 2 2 2 3 6
40     40        13.1.4      1 1 1 1 2 1
41     41        21.1.6      1 1 1 3 2 1
42     42      200.1.50      1 2 2 2 2 6
43     43      165.1.42      1 1 1 3 2 5
44     44      105.1.27      1 1 1 3 3 3
45     45         9.1.3      1 1 1 3 1 1
46     46         5.1.2      1 1 1 2 1 1
47     47       81.1.21      1 1 1 3 1 3
48     48      140.1.35      1 2 2 2 3 4
49     49        25.1.7      1 1 1 1 3 1
50     50      149.1.38      1 1 1 2 1 5
51     51      112.1.28      1 2 2 1 1 4
52     52       52.1.13      1 2 2 1 2 2
53     53      144.1.36      1 2 2 3 3 4
54     54       89.1.23      1 1 1 2 2 3
run.no run.no.std.rp Blocks A B C D E
55      55      141.2.36      2 1 1 3 3 4
56      56       69.2.18      2 1 1 3 3 2
57      57      125.2.32      2 1 1 2 2 4
58      58       53.2.14      2 1 1 2 2 2
59      59      176.2.44      2 2 2 2 3 5
60      60        24.2.6      2 2 2 3 2 1
61      61      113.2.29      2 1 1 2 1 4
62      62      152.2.38      2 2 2 2 1 5
63      63       41.2.11      2 1 1 2 1 2
64      64      117.2.30      2 1 1 3 1 4
65      65       92.2.23      2 2 2 2 2 3
66      66      168.2.42      2 2 2 3 2 5
67      67       76.2.19      2 2 2 1 1 3
68      68      172.2.43      2 2 2 1 3 5
69      69        20.2.5      2 2 2 2 2 1
70      70       49.2.13      2 1 1 1 2 2
71      71         4.2.1      2 2 2 1 1 1
72      72      193.2.49      2 1 1 1 2 6
73      73      181.2.46      2 1 1 1 1 6
74      74       45.2.12      2 1 1 3 1 2
75      75      137.2.35      2 1 1 2 3 4
76      76       61.2.16      2 1 1 1 3 2
77      77        12.2.3      2 2 2 3 1 1
78      78         8.2.2      2 2 2 2 1 1
79      79      209.2.53      2 1 1 2 3 6
80      80      121.2.31      2 1 1 1 2 4
81      81        28.2.7      2 2 2 1 3 1
82      82      133.2.34      2 1 1 1 3 4
83      83      160.2.40      2 2 2 1 2 5
84      84      108.2.27      2 2 2 3 3 3
85      85      205.2.52      2 1 1 1 3 6
86      86       96.2.24      2 2 2 3 2 3
87      87      100.2.25      2 2 2 1 3 3
88      88       84.2.21      2 2 2 3 1 3
89      89       57.2.15      2 1 1 3 2 2
90      90       65.2.17      2 1 1 2 3 2
91      91        36.2.9      2 2 2 3 3 1
92      92       37.2.10      2 1 1 1 1 2
93      93      189.2.48      2 1 1 3 1 6
94      94       88.2.22      2 2 2 1 2 3
95      95        16.2.4      2 2 2 1 2 1
96      96       80.2.20      2 2 2 2 1 3
97      97      201.2.51      2 1 1 3 2 6
98      98      197.2.50      2 1 1 2 2 6
99      99      164.2.41      2 2 2 2 2 5
100    100      213.2.54      2 1 1 3 3 6
101    101      180.2.45      2 2 2 3 3 5
102    102      109.2.28      2 1 1 1 1 4
103    103        32.2.8      2 2 2 2 3 1
104    104      148.2.37      2 2 2 1 1 5
105    105      156.2.39      2 2 2 3 1 5
106    106      185.2.47      2 1 1 2 1 6
107    107      129.2.33      2 1 1 3 2 4
108    108      104.2.26      2 2 2 2 3 3
run.no run.no.std.rp Blocks A B C D E
109    109      179.3.45      3 1 2 3 3 5
110    110      142.3.36      3 2 1 3 3 4
111    111      110.3.28      3 2 1 1 1 4
112    112      138.3.35      3 2 1 2 3 4
113    113      103.3.26      3 1 2 2 3 3
114    114      126.3.32      3 2 1 2 2 4
115    115        31.3.8      3 1 2 2 3 1
116    116      155.3.39      3 1 2 3 1 5
117    117      206.3.52      3 2 1 1 3 6
118    118        15.3.4      3 1 2 1 2 1
119    119      107.3.27      3 1 2 3 3 3
120    120       99.3.25      3 1 2 1 3 3
121    121      182.3.46      3 2 1 1 1 6
122    122       66.3.17      3 2 1 2 3 2
123    123       46.3.12      3 2 1 3 1 2
124    124      122.3.31      3 2 1 1 2 4
125    125        23.3.6      3 1 2 3 2 1
126    126      163.3.41      3 1 2 2 2 5
127    127        11.3.3      3 1 2 3 1 1
128    128       50.3.13      3 2 1 1 2 2
129    129       70.3.18      3 2 1 3 3 2
130    130      114.3.29      3 2 1 2 1 4
131    131       58.3.15      3 2 1 3 2 2
132    132      194.3.49      3 2 1 1 2 6
133    133       75.3.19      3 1 2 1 1 3
134    134      186.3.47      3 2 1 2 1 6
135    135      190.3.48      3 2 1 3 1 6
136    136      214.3.54      3 2 1 3 3 6
137    137      118.3.30      3 2 1 3 1 4
138    138      147.3.37      3 1 2 1 1 5
139    139       62.3.16      3 2 1 1 3 2
140    140        35.3.9      3 1 2 3 3 1
141    141       83.3.21      3 1 2 3 1 3
142    142        19.3.5      3 1 2 2 2 1
143    143       87.3.22      3 1 2 1 2 3
144    144       38.3.10      3 2 1 1 1 2
145    145      202.3.51      3 2 1 3 2 6
146    146       95.3.24      3 1 2 3 2 3
147    147         3.3.1      3 1 2 1 1 1
148    148      159.3.40      3 1 2 1 2 5
149    149       54.3.14      3 2 1 2 2 2
150    150        27.3.7      3 1 2 1 3 1
151    151      175.3.44      3 1 2 2 3 5
152    152      151.3.38      3 1 2 2 1 5
153    153       91.3.23      3 1 2 2 2 3
154    154       42.3.11      3 2 1 2 1 2
155    155       79.3.20      3 1 2 2 1 3
156    156      134.3.34      3 2 1 1 3 4
157    157         7.3.2      3 1 2 2 1 1
158    158      171.3.43      3 1 2 1 3 5
159    159      198.3.50      3 2 1 2 2 6
160    160      130.3.33      3 2 1 3 2 4
161    161      210.3.53      3 2 1 2 3 6
162    162      167.3.42      3 1 2 3 2 5
run.no run.no.std.rp Blocks A B C D E
163    163       47.4.12      4 1 2 3 1 2
164    164       98.4.25      4 2 1 1 3 3
165    165      158.4.40      4 2 1 1 2 5
166    166      154.4.39      4 2 1 3 1 5
167    167      150.4.38      4 2 1 2 1 5
168    168        14.4.4      4 2 1 1 2 1
169    169      162.4.41      4 2 1 2 2 5
170    170       86.4.22      4 2 1 1 2 3
171    171        22.4.6      4 2 1 3 2 1
172    172      119.4.30      4 1 2 3 1 4
173    173      178.4.45      4 2 1 3 3 5
174    174       90.4.23      4 2 1 2 2 3
175    175       94.4.24      4 2 1 3 2 3
176    176      146.4.37      4 2 1 1 1 5
177    177       63.4.16      4 1 2 1 3 2
178    178        26.4.7      4 2 1 1 3 1
179    179      127.4.32      4 1 2 2 2 4
180    180      102.4.26      4 2 1 2 3 3
181    181       82.4.21      4 2 1 3 1 3
182    182      131.4.33      4 1 2 3 2 4
183    183        10.4.3      4 2 1 3 1 1
184    184      215.4.54      4 1 2 3 3 6
185    185      183.4.46      4 1 2 1 1 6
186    186       51.4.13      4 1 2 1 2 2
187    187      187.4.47      4 1 2 2 1 6
188    188      199.4.50      4 1 2 2 2 6
189    189      211.4.53      4 1 2 2 3 6
190    190         2.4.1      4 2 1 1 1 1
191    191      115.4.29      4 1 2 2 1 4
192    192      123.4.31      4 1 2 1 2 4
193    193      203.4.51      4 1 2 3 2 6
194    194        18.4.5      4 2 1 2 2 1
195    195      207.4.52      4 1 2 1 3 6
196    196      170.4.43      4 2 1 1 3 5
197    197       55.4.14      4 1 2 2 2 2
198    198      191.4.48      4 1 2 3 1 6
199    199      139.4.35      4 1 2 2 3 4
200    200        34.4.9      4 2 1 3 3 1
201    201       67.4.17      4 1 2 2 3 2
202    202       74.4.19      4 2 1 1 1 3
203    203      143.4.36      4 1 2 3 3 4
204    204         6.4.2      4 2 1 2 1 1
205    205      195.4.49      4 1 2 1 2 6
206    206        30.4.8      4 2 1 2 3 1
207    207      106.4.27      4 2 1 3 3 3
208    208      111.4.28      4 1 2 1 1 4
209    209      135.4.34      4 1 2 1 3 4
210    210       39.4.10      4 1 2 1 1 2
211    211      166.4.42      4 2 1 3 2 5
212    212       43.4.11      4 1 2 2 1 2
213    213       59.4.15      4 1 2 3 2 2
214    214      174.4.44      4 2 1 2 3 5
215    215       78.4.20      4 2 1 2 1 3
216    216       71.4.18      4 1 2 3 3 2
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
Warning messages:
1: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 4, seed = 12345) :
confounding of blocks with 2-factor interactions
2: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 4, seed = 12345) :
confounding of blocks with 2-factor interactions
3: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 4, seed = 12345) :
confounding of blocks with 2-factor interactions
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1       1      179.1.19      1 1 2 3 3 5
2       2         1.1.1      1 1 1 1 1 1
3       3      216.1.24      1 2 2 3 3 6
4       4         4.1.4      1 2 2 1 1 1
5       5       92.1.12      1 2 2 2 2 3
6       6       91.1.11      1 1 2 2 2 3
7       7       90.1.10      1 2 1 2 2 3
8       8      180.1.20      1 2 2 3 3 5
9       9      213.1.21      1 1 1 3 3 6
10     10        89.1.9      1 1 1 2 2 3
11     11      214.1.22      1 2 1 3 3 6
12     12        37.1.5      1 1 1 1 1 2
13     13         3.1.3      1 1 2 1 1 1
14     14      126.1.14      1 2 1 2 2 4
15     15      215.1.23      1 1 2 3 3 6
16     16      178.1.18      1 2 1 3 3 5
17     17      127.1.15      1 1 2 2 2 4
18     18      125.1.13      1 1 1 2 2 4
19     19      128.1.16      1 2 2 2 2 4
20     20        38.1.6      1 2 1 1 1 2
21     21      177.1.17      1 1 1 3 3 5
22     22         2.1.2      1 2 1 1 1 1
23     23        39.1.7      1 1 2 1 1 2
24     24        40.1.8      1 2 2 1 1 2
run.no run.no.std.rp Blocks A B C D E
25     25        70.2.6      2 2 1 3 3 2
26     26      200.2.24      2 2 2 2 2 6
27     27      161.2.17      2 1 1 2 2 5
28     28      198.2.22      2 2 1 2 2 6
29     29        69.2.5      2 1 1 3 3 2
30     30        35.2.3      2 1 2 3 3 1
31     31        34.2.2      2 2 1 3 3 1
32     32      112.2.16      2 2 2 1 1 4
33     33        73.2.9      2 1 1 1 1 3
34     34      110.2.14      2 2 1 1 1 4
35     35        72.2.8      2 2 2 3 3 2
36     36        36.2.4      2 2 2 3 3 1
37     37      162.2.18      2 2 1 2 2 5
38     38       75.2.11      2 1 2 1 1 3
39     39      163.2.19      2 1 2 2 2 5
40     40        33.2.1      2 1 1 3 3 1
41     41      164.2.20      2 2 2 2 2 5
42     42      199.2.23      2 1 2 2 2 6
43     43      111.2.15      2 1 2 1 1 4
44     44       76.2.12      2 2 2 1 1 3
45     45      197.2.21      2 1 1 2 2 6
46     46       74.2.10      2 2 1 1 1 3
47     47      109.2.13      2 1 1 1 1 4
48     48        71.2.7      2 1 2 3 3 2
run.no run.no.std.rp Blocks A B C D E
49     49      182.3.22      3 2 1 1 1 6
50     50        56.3.8      3 2 2 2 2 2
51     51        18.3.2      3 2 1 2 2 1
52     52        53.3.5      3 1 1 2 2 2
53     53      147.3.19      3 1 2 1 1 5
54     54      145.3.17      3 1 1 1 1 5
55     55      148.3.20      3 2 2 1 1 5
56     56      183.3.23      3 1 2 1 1 6
57     57        55.3.7      3 1 2 2 2 2
58     58      146.3.18      3 2 1 1 1 5
59     59      144.3.16      3 2 2 3 3 4
60     60        19.3.3      3 1 2 2 2 1
61     61      106.3.10      3 2 1 3 3 3
62     62        54.3.6      3 2 1 2 2 2
63     63      181.3.21      3 1 1 1 1 6
64     64        20.3.4      3 2 2 2 2 1
65     65      108.3.12      3 2 2 3 3 3
66     66      141.3.13      3 1 1 3 3 4
67     67        17.3.1      3 1 1 2 2 1
68     68      184.3.24      3 2 2 1 1 6
69     69      107.3.11      3 1 2 3 3 3
70     70      142.3.14      3 2 1 3 3 4
71     71       105.3.9      3 1 1 3 3 3
72     72      143.3.15      3 1 2 3 3 4
run.no run.no.std.rp Blocks A B C D E
73     73        23.4.3      4 1 2 3 2 1
74     74      151.4.19      4 1 2 2 1 5
75     75      186.4.22      4 2 1 2 1 6
76     76        57.4.5      4 1 1 3 2 2
77     77      149.4.17      4 1 1 2 1 5
78     78      136.4.16      4 2 2 1 3 4
79     79        22.4.2      4 2 1 3 2 1
80     80      185.4.21      4 1 1 2 1 6
81     81       99.4.11      4 1 2 1 3 3
82     82      133.4.13      4 1 1 1 3 4
83     83        60.4.8      4 2 2 3 2 2
84     84      150.4.18      4 2 1 2 1 5
85     85        58.4.6      4 2 1 3 2 2
86     86        97.4.9      4 1 1 1 3 3
87     87      187.4.23      4 1 2 2 1 6
88     88        59.4.7      4 1 2 3 2 2
89     89      135.4.15      4 1 2 1 3 4
90     90        21.4.1      4 1 1 3 2 1
91     91      134.4.14      4 2 1 1 3 4
92     92        24.4.4      4 2 2 3 2 1
93     93      188.4.24      4 2 2 2 1 6
94     94      152.4.20      4 2 2 2 1 5
95     95       98.4.10      4 2 1 1 3 3
96     96      100.4.12      4 2 2 1 3 3
run.no run.no.std.rp Blocks A B C D E
97      97         5.5.1      5 1 1 2 1 1
98      98      131.5.15      5 1 2 3 2 4
99      99        44.5.8      5 2 2 2 1 2
100    100         8.5.4      5 2 2 2 1 1
101    101      169.5.17      5 1 1 1 3 5
102    102      171.5.19      5 1 2 1 3 5
103    103      132.5.16      5 2 2 3 2 4
104    104      205.5.21      5 1 1 1 3 6
105    105      206.5.22      5 2 1 1 3 6
106    106      208.5.24      5 2 2 1 3 6
107    107         6.5.2      5 2 1 2 1 1
108    108       95.5.11      5 1 2 3 2 3
109    109       94.5.10      5 2 1 3 2 3
110    110      207.5.23      5 1 2 1 3 6
111    111      170.5.18      5 2 1 1 3 5
112    112        43.5.7      5 1 2 2 1 2
113    113      172.5.20      5 2 2 1 3 5
114    114        42.5.6      5 2 1 2 1 2
115    115      129.5.13      5 1 1 3 2 4
116    116         7.5.3      5 1 2 2 1 1
117    117       96.5.12      5 2 2 3 2 3
118    118      130.5.14      5 2 1 3 2 4
119    119        41.5.5      5 1 1 2 1 2
120    120        93.5.9      5 1 1 3 2 3
run.no run.no.std.rp Blocks A B C D E
121    121      167.6.19      6 1 2 3 2 5
122    122      203.6.23      6 1 2 3 2 6
123    123      204.6.24      6 2 2 3 2 6
124    124        27.6.3      6 1 2 1 3 1
125    125      202.6.22      6 2 1 3 2 6
126    126        28.6.4      6 2 2 1 3 1
127    127        63.6.7      6 1 2 1 3 2
128    128       80.6.12      6 2 2 2 1 3
129    129      168.6.20      6 2 2 3 2 5
130    130      166.6.18      6 2 1 3 2 5
131    131      201.6.21      6 1 1 3 2 6
132    132        64.6.8      6 2 2 1 3 2
133    133      115.6.15      6 1 2 2 1 4
134    134        26.6.2      6 2 1 1 3 1
135    135        25.6.1      6 1 1 1 3 1
136    136        77.6.9      6 1 1 2 1 3
137    137      113.6.13      6 1 1 2 1 4
138    138      114.6.14      6 2 1 2 1 4
139    139       78.6.10      6 2 1 2 1 3
140    140      165.6.17      6 1 1 3 2 5
141    141       79.6.11      6 1 2 2 1 3
142    142        61.6.5      6 1 1 1 3 2
143    143        62.6.6      6 2 1 1 3 2
144    144      116.6.16      6 2 2 2 1 4
run.no run.no.std.rp Blocks A B C D E
145    145        30.7.2      7 2 1 2 3 1
146    146      118.7.14      7 2 1 3 1 4
147    147      160.7.20      7 2 2 1 2 5
148    148      120.7.16      7 2 2 3 1 4
149    149        29.7.1      7 1 1 2 3 1
150    150      193.7.21      7 1 1 1 2 6
151    151        65.7.5      7 1 1 2 3 2
152    152        66.7.6      7 2 1 2 3 2
153    153      117.7.13      7 1 1 3 1 4
154    154        68.7.8      7 2 2 2 3 2
155    155        67.7.7      7 1 2 2 3 2
156    156       82.7.10      7 2 1 3 1 3
157    157      195.7.23      7 1 2 1 2 6
158    158      119.7.15      7 1 2 3 1 4
159    159       83.7.11      7 1 2 3 1 3
160    160       84.7.12      7 2 2 3 1 3
161    161        32.7.4      7 2 2 2 3 1
162    162      159.7.19      7 1 2 1 2 5
163    163      157.7.17      7 1 1 1 2 5
164    164        81.7.9      7 1 1 3 1 3
165    165        31.7.3      7 1 2 2 3 1
166    166      158.7.18      7 2 1 1 2 5
167    167      196.7.24      7 2 2 1 2 6
168    168      194.7.22      7 2 1 1 2 6
run.no run.no.std.rp Blocks A B C D E
169    169       101.8.9      8 1 1 2 3 3
170    170      191.8.23      8 1 2 3 1 6
171    171      156.8.20      8 2 2 3 1 5
172    172        50.8.6      8 2 1 1 2 2
173    173      155.8.19      8 1 2 3 1 5
174    174        13.8.1      8 1 1 1 2 1
175    175      154.8.18      8 2 1 3 1 5
176    176      102.8.10      8 2 1 2 3 3
177    177      189.8.21      8 1 1 3 1 6
178    178      139.8.15      8 1 2 2 3 4
179    179      103.8.11      8 1 2 2 3 3
180    180      104.8.12      8 2 2 2 3 3
181    181      153.8.17      8 1 1 3 1 5
182    182        14.8.2      8 2 1 1 2 1
183    183        52.8.8      8 2 2 1 2 2
184    184      190.8.22      8 2 1 3 1 6
185    185      192.8.24      8 2 2 3 1 6
186    186        16.8.4      8 2 2 1 2 1
187    187      140.8.16      8 2 2 2 3 4
188    188        49.8.5      8 1 1 1 2 2
189    189      137.8.13      8 1 1 2 3 4
190    190        15.8.3      8 1 2 1 2 1
191    191      138.8.14      8 2 1 2 3 4
192    192        51.8.7      8 1 2 1 2 2
run.no run.no.std.rp Blocks A B C D E
193    193        10.9.2      9 2 1 3 1 1
194    194      174.9.18      9 2 1 2 3 5
195    195        11.9.3      9 1 2 3 1 1
196    196        46.9.6      9 2 1 3 1 2
197    197      173.9.17      9 1 1 2 3 5
198    198      175.9.19      9 1 2 2 3 5
199    199      212.9.24      9 2 2 2 3 6
200    200      122.9.14      9 2 1 1 2 4
201    201      121.9.13      9 1 1 1 2 4
202    202       86.9.10      9 2 1 1 2 3
203    203       88.9.12      9 2 2 1 2 3
204    204        12.9.4      9 2 2 3 1 1
205    205      124.9.16      9 2 2 1 2 4
206    206       87.9.11      9 1 2 1 2 3
207    207      210.9.22      9 2 1 2 3 6
208    208         9.9.1      9 1 1 3 1 1
209    209        48.9.8      9 2 2 3 1 2
210    210        45.9.5      9 1 1 3 1 2
211    211      123.9.15      9 1 2 1 2 4
212    212        85.9.9      9 1 1 1 2 3
213    213        47.9.7      9 1 2 3 1 2
214    214      209.9.21      9 1 1 2 3 6
215    215      176.9.20      9 2 2 2 3 5
216    216      211.9.23      9 1 2 2 3 6
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
Warning messages:
1: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, seed = 12345) :
confounding of blocks with 2-factor interactions
2: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, seed = 12345) :
confounding of blocks with 2-factor interactions
3: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, seed = 12345) :
confounding of blocks with 2-factor interactions
creating full factorial with 216 runs ...

run.no run.no.std.rp Blocks A B C D E
1      1       177.1.5      1 1 1 3 3 5
2      2       216.1.6      1 2 2 3 3 6
3      3        40.1.2      1 2 2 1 1 2
4      4       128.1.4      1 2 2 2 2 4
5      5         1.1.1      1 1 1 1 1 1
6      6        89.1.3      1 1 1 2 2 3
run.no run.no.std.rp Blocks A B C D E
7       7        73.2.3      2 1 1 1 1 3
8       8        33.2.1      2 1 1 3 3 1
9       9        72.2.2      2 2 2 3 3 2
10     10       161.2.5      2 1 1 2 2 5
11     11       200.2.6      2 2 2 2 2 6
12     12       112.2.4      2 2 2 1 1 4
run.no run.no.std.rp Blocks A B C D E
13     13       184.3.6      3 2 2 1 1 6
14     14       144.3.4      3 2 2 3 3 4
15     15       105.3.3      3 1 1 3 3 3
16     16        17.3.1      3 1 1 2 2 1
17     17       145.3.5      3 1 1 1 1 5
18     18        56.3.2      3 2 2 2 2 2
run.no run.no.std.rp Blocks A B C D E
19     19       149.4.5      4 1 1 2 1 5
20     20        60.4.2      4 2 2 3 2 2
21     21        21.4.1      4 1 1 3 2 1
22     22        97.4.3      4 1 1 1 3 3
23     23       136.4.4      4 2 2 1 3 4
24     24       188.4.6      4 2 2 2 1 6
run.no run.no.std.rp Blocks A B C D E
25     25       132.5.4      5 2 2 3 2 4
26     26       208.5.6      5 2 2 1 3 6
27     27       169.5.5      5 1 1 1 3 5
28     28         5.5.1      5 1 1 2 1 1
29     29        93.5.3      5 1 1 3 2 3
30     30        44.5.2      5 2 2 2 1 2
run.no run.no.std.rp Blocks A B C D E
31     31       165.6.5      6 1 1 3 2 5
32     32       116.6.4      6 2 2 2 1 4
33     33        25.6.1      6 1 1 1 3 1
34     34        64.6.2      6 2 2 1 3 2
35     35       204.6.6      6 2 2 3 2 6
36     36        77.6.3      6 1 1 2 1 3
run.no run.no.std.rp Blocks A B C D E
37     37       157.7.5      7 1 1 1 2 5
38     38        81.7.3      7 1 1 3 1 3
39     39        29.7.1      7 1 1 2 3 1
40     40        68.7.2      7 2 2 2 3 2
41     41       196.7.6      7 2 2 1 2 6
42     42       120.7.4      7 2 2 3 1 4
run.no run.no.std.rp Blocks A B C D E
43     43       101.8.3      8 1 1 2 3 3
44     44       192.8.6      8 2 2 3 1 6
45     45       153.8.5      8 1 1 3 1 5
46     46       140.8.4      8 2 2 2 3 4
47     47        52.8.2      8 2 2 1 2 2
48     48        13.8.1      8 1 1 1 2 1
run.no run.no.std.rp Blocks A B C D E
49     49       212.9.6      9 2 2 2 3 6
50     50       173.9.5      9 1 1 2 3 5
51     51       124.9.4      9 2 2 1 2 4
52     52        48.9.2      9 2 2 3 1 2
53     53         9.9.1      9 1 1 3 1 1
54     54        85.9.3      9 1 1 1 2 3
run.no run.no.std.rp Blocks A B C D E
55     55      180.10.5     10 2 2 3 3 5
56     56      213.10.6     10 1 1 3 3 6
57     57        4.10.1     10 2 2 1 1 1
58     58       37.10.2     10 1 1 1 1 2
59     59       92.10.3     10 2 2 2 2 3
60     60      125.10.4     10 1 1 2 2 4
run.no run.no.std.rp Blocks A B C D E
61     61      109.11.4     11 1 1 1 1 4
62     62      197.11.6     11 1 1 2 2 6
63     63       36.11.1     11 2 2 3 3 1
64     64      164.11.5     11 2 2 2 2 5
65     65       69.11.2     11 1 1 3 3 2
66     66       76.11.3     11 2 2 1 1 3
run.no run.no.std.rp Blocks A B C D E
67     67      108.12.3     12 2 2 3 3 3
68     68      148.12.5     12 2 2 1 1 5
69     69       53.12.2     12 1 1 2 2 2
70     70      141.12.4     12 1 1 3 3 4
71     71      181.12.6     12 1 1 1 1 6
72     72       20.12.1     12 2 2 2 2 1
run.no run.no.std.rp Blocks A B C D E
73     73      185.13.6     13 1 1 2 1 6
74     74      133.13.4     13 1 1 1 3 4
75     75       57.13.2     13 1 1 3 2 2
76     76      152.13.5     13 2 2 2 1 5
77     77      100.13.3     13 2 2 1 3 3
78     78       24.13.1     13 2 2 3 2 1
run.no run.no.std.rp Blocks A B C D E
79     79      172.14.5     14 2 2 1 3 5
80     80      205.14.6     14 1 1 1 3 6
81     81       41.14.2     14 1 1 2 1 2
82     82        8.14.1     14 2 2 2 1 1
83     83      129.14.4     14 1 1 3 2 4
84     84       96.14.3     14 2 2 3 2 3
run.no run.no.std.rp Blocks A B C D E
85     85       61.15.2     15 1 1 1 3 2
86     86      168.15.5     15 2 2 3 2 5
87     87       28.15.1     15 2 2 1 3 1
88     88       80.15.3     15 2 2 2 1 3
89     89      201.15.6     15 1 1 3 2 6
90     90      113.15.4     15 1 1 2 1 4
run.no run.no.std.rp Blocks A B C D E
91     91       65.16.2     16 1 1 2 3 2
92     92       84.16.3     16 2 2 3 1 3
93     93      160.16.5     16 2 2 1 2 5
94     94       32.16.1     16 2 2 2 3 1
95     95      193.16.6     16 1 1 1 2 6
96     96      117.16.4     16 1 1 3 1 4
run.no run.no.std.rp Blocks A B C D E
97      97      137.17.4     17 1 1 2 3 4
98      98      156.17.5     17 2 2 3 1 5
99      99      189.17.6     17 1 1 3 1 6
100    100      104.17.3     17 2 2 2 3 3
101    101       49.17.2     17 1 1 1 2 2
102    102       16.17.1     17 2 2 1 2 1
run.no run.no.std.rp Blocks A B C D E
103    103      176.18.5     18 2 2 2 3 5
104    104       88.18.3     18 2 2 1 2 3
105    105       12.18.1     18 2 2 3 1 1
106    106       45.18.2     18 1 1 3 1 2
107    107      121.18.4     18 1 1 1 2 4
108    108      209.18.6     18 1 1 2 3 6
run.no run.no.std.rp Blocks A B C D E
109    109       38.19.2     19 2 1 1 1 2
110    110       91.19.3     19 1 2 2 2 3
111    111      179.19.5     19 1 2 3 3 5
112    112      214.19.6     19 2 1 3 3 6
113    113        3.19.1     19 1 2 1 1 1
114    114      126.19.4     19 2 1 2 2 4
run.no run.no.std.rp Blocks A B C D E
115    115       75.20.3     20 1 2 1 1 3
116    116       35.20.1     20 1 2 3 3 1
117    117      163.20.5     20 1 2 2 2 5
118    118      198.20.6     20 2 1 2 2 6
119    119      110.20.4     20 2 1 1 1 4
120    120       70.20.2     20 2 1 3 3 2
run.no run.no.std.rp Blocks A B C D E
121    121       19.21.1     21 1 2 2 2 1
122    122      107.21.3     21 1 2 3 3 3
123    123      182.21.6     21 2 1 1 1 6
124    124      142.21.4     21 2 1 3 3 4
125    125      147.21.5     21 1 2 1 1 5
126    126       54.21.2     21 2 1 2 2 2
run.no run.no.std.rp Blocks A B C D E
127    127       58.22.2     22 2 1 3 2 2
128    128      151.22.5     22 1 2 2 1 5
129    129      134.22.4     22 2 1 1 3 4
130    130       99.22.3     22 1 2 1 3 3
131    131      186.22.6     22 2 1 2 1 6
132    132       23.22.1     22 1 2 3 2 1
run.no run.no.std.rp Blocks A B C D E
133    133       42.23.2     23 2 1 2 1 2
134    134       95.23.3     23 1 2 3 2 3
135    135        7.23.1     23 1 2 2 1 1
136    136      206.23.6     23 2 1 1 3 6
137    137      171.23.5     23 1 2 1 3 5
138    138      130.23.4     23 2 1 3 2 4
run.no run.no.std.rp Blocks A B C D E
139    139      202.24.6     24 2 1 3 2 6
140    140      114.24.4     24 2 1 2 1 4
141    141      167.24.5     24 1 2 3 2 5
142    142       27.24.1     24 1 2 1 3 1
143    143       79.24.3     24 1 2 2 1 3
144    144       62.24.2     24 2 1 1 3 2
run.no run.no.std.rp Blocks A B C D E
145    145      159.25.5     25 1 2 1 2 5
146    146      118.25.4     25 2 1 3 1 4
147    147      194.25.6     25 2 1 1 2 6
148    148       83.25.3     25 1 2 3 1 3
149    149       31.25.1     25 1 2 2 3 1
150    150       66.25.2     25 2 1 2 3 2
run.no run.no.std.rp Blocks A B C D E
151    151       15.26.1     26 1 2 1 2 1
152    152      103.26.3     26 1 2 2 3 3
153    153      190.26.6     26 2 1 3 1 6
154    154      155.26.5     26 1 2 3 1 5
155    155       50.26.2     26 2 1 1 2 2
156    156      138.26.4     26 2 1 2 3 4
run.no run.no.std.rp Blocks A B C D E
157    157      122.27.4     27 2 1 1 2 4
158    158      210.27.6     27 2 1 2 3 6
159    159      175.27.5     27 1 2 2 3 5
160    160       46.27.2     27 2 1 3 1 2
161    161       11.27.1     27 1 2 3 1 1
162    162       87.27.3     27 1 2 1 2 3
run.no run.no.std.rp Blocks A B C D E
163    163      127.28.4     28 1 2 2 2 4
164    164        2.28.1     28 2 1 1 1 1
165    165      178.28.5     28 2 1 3 3 5
166    166      215.28.6     28 1 2 3 3 6
167    167       90.28.3     28 2 1 2 2 3
168    168       39.28.2     28 1 2 1 1 2
run.no run.no.std.rp Blocks A B C D E
169    169      111.29.4     29 1 2 1 1 4
170    170       34.29.1     29 2 1 3 3 1
171    171      162.29.5     29 2 1 2 2 5
172    172       74.29.3     29 2 1 1 1 3
173    173       71.29.2     29 1 2 3 3 2
174    174      199.29.6     29 1 2 2 2 6
run.no run.no.std.rp Blocks A B C D E
175    175      106.30.3     30 2 1 3 3 3
176    176       18.30.1     30 2 1 2 2 1
177    177      146.30.5     30 2 1 1 1 5
178    178       55.30.2     30 1 2 2 2 2
179    179      143.30.4     30 1 2 3 3 4
180    180      183.30.6     30 1 2 1 1 6
run.no run.no.std.rp Blocks A B C D E
181    181       59.31.2     31 1 2 3 2 2
182    182      135.31.4     31 1 2 1 3 4
183    183      150.31.5     31 2 1 2 1 5
184    184      187.31.6     31 1 2 2 1 6
185    185       22.31.1     31 2 1 3 2 1
186    186       98.31.3     31 2 1 1 3 3
run.no run.no.std.rp Blocks A B C D E
187    187      170.32.5     32 2 1 1 3 5
188    188      207.32.6     32 1 2 1 3 6
189    189       94.32.3     32 2 1 3 2 3
190    190      131.32.4     32 1 2 3 2 4
191    191        6.32.1     32 2 1 2 1 1
192    192       43.32.2     32 1 2 2 1 2
run.no run.no.std.rp Blocks A B C D E
193    193       26.33.1     33 2 1 1 3 1
194    194      115.33.4     33 1 2 2 1 4
195    195      203.33.6     33 1 2 3 2 6
196    196       63.33.2     33 1 2 1 3 2
197    197       78.33.3     33 2 1 2 1 3
198    198      166.33.5     33 2 1 3 2 5
run.no run.no.std.rp Blocks A B C D E
199    199       67.34.2     34 1 2 2 3 2
200    200      119.34.4     34 1 2 3 1 4
201    201      195.34.6     34 1 2 1 2 6
202    202       82.34.3     34 2 1 3 1 3
203    203       30.34.1     34 2 1 2 3 1
204    204      158.34.5     34 2 1 1 2 5
run.no run.no.std.rp Blocks A B C D E
205    205       51.35.2     35 1 2 1 2 2
206    206      139.35.4     35 1 2 2 3 4
207    207       14.35.1     35 2 1 1 2 1
208    208      102.35.3     35 2 1 2 3 3
209    209      191.35.6     35 1 2 3 1 6
210    210      154.35.5     35 2 1 3 1 5
run.no run.no.std.rp Blocks A B C D E
211    211      123.36.4     36 1 2 1 2 4
212    212      211.36.6     36 1 2 2 3 6
213    213       47.36.2     36 1 2 3 1 2
214    214       86.36.3     36 2 1 1 2 3
215    215      174.36.5     36 2 1 2 3 5
216    216       10.36.1     36 2 1 3 1 1
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
Warning messages:
1: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 36, seed = 12345) :
confounding of blocks with 2-factor interactions
2: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 36, seed = 12345) :
confounding of blocks with 2-factor interactions
3: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 36, seed = 12345) :
confounding of blocks with 2-factor interactions
4: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 36, seed = 12345) :
confounding of blocks with 2-factor interactions
5: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 36, seed = 12345) :
confounding of blocks with 2-factor interactions
6: In fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 36, seed = 12345) :
confounding of blocks with 2-factor interactions
creating full factorial with 900 runs ...

run.no run.no.std.rp Blocks A B C  D
1       1      698.1.47      1 2 3 5  8
2       2      637.1.43      1 1 3 1  8
3       3      431.1.29      1 2 4 5  5
4       4      890.1.60      1 2 2 6 10
5       5      417.1.28      1 3 4 4  5
6       6      385.1.26      1 1 4 2  5
7       7      652.1.44      1 1 3 2  8
8       8      298.1.20      1 1 5 2  4
9       9      579.1.39      1 3 3 3  7
10     10      167.1.12      1 2 1 6  2
11     11      608.1.41      1 2 3 5  7
12     12      562.1.38      1 1 3 2  7
13     13      521.1.35      1 2 4 5  6
14     14        62.1.5      1 2 1 5  1
15     15      669.1.45      1 3 3 3  8
16     16      138.1.10      1 3 1 4  2
17     17      547.1.37      1 1 3 1  7
18     18      724.1.49      1 1 2 1  9
19     19        33.1.3      1 3 1 3  1
20     20      208.1.14      1 1 5 2  3
21     21        91.1.7      1 1 1 1  2
22     22      225.1.15      1 3 5 3  3
23     23      739.1.50      1 1 2 2  9
24     24      846.1.57      1 3 2 3 10
25     25      492.1.33      1 3 4 3  6
26     26       106.1.8      1 1 1 2  2
27     27      785.1.53      1 2 2 5  9
28     28      814.1.55      1 1 2 1 10
29     29      713.1.48      1 2 3 6  8
30     30      240.1.16      1 3 5 4  3
31     31        77.1.6      1 2 1 6  1
32     32      623.1.42      1 2 3 6  7
33     33      344.1.23      1 2 5 5  4
34     34      315.1.21      1 3 5 3  4
35     35      193.1.13      1 1 5 1  3
36     36      370.1.25      1 1 4 1  5
37     37      254.1.17      1 2 5 5  3
38     38      800.1.54      1 2 2 6  9
39     39      402.1.27      1 3 4 3  5
40     40      594.1.40      1 3 3 4  7
41     41      269.1.18      1 2 5 6  3
42     42        16.1.2      1 1 1 2  1
43     43      283.1.19      1 1 5 1  4
44     44      152.1.11      1 2 1 5  2
45     45      875.1.59      1 2 2 5 10
46     46      507.1.34      1 3 4 4  6
47     47      359.1.24      1 2 5 6  4
48     48      771.1.52      1 3 2 4  9
49     49      446.1.30      1 2 4 6  5
50     50      460.1.31      1 1 4 1  6
51     51        48.1.4      1 3 1 4  1
52     52      536.1.36      1 2 4 6  6
53     53      756.1.51      1 3 2 3  9
54     54      684.1.46      1 3 3 4  8
55     55         1.1.1      1 1 1 1  1
56     56      861.1.58      1 3 2 4 10
57     57      829.1.56      1 1 2 2 10
58     58      330.1.22      1 3 5 4  4
59     59       123.1.9      1 3 1 3  2
60     60      475.1.32      1 1 4 2  6
run.no run.no.std.rp Blocks A B C  D
61      61      405.2.27      2 3 5 3  5
62      62      655.2.44      2 1 4 2  8
63      63      597.2.40      2 3 4 4  7
64      64      565.2.38      2 1 4 2  7
65      65       126.2.9      2 3 2 3  2
66      66      420.2.28      2 3 5 4  5
67      67       109.2.8      2 1 2 2  2
68      68      864.2.58      2 3 3 4 10
69      69      318.2.22      2 3 1 4  4
70      70      170.2.12      2 2 2 6  2
71      71      849.2.57      2 3 3 3 10
72      72      196.2.14      2 1 1 2  3
73      73      893.2.60      2 2 3 6 10
74      74         4.2.1      2 1 2 1  1
75      75      347.2.24      2 2 1 6  4
76      76      550.2.37      2 1 4 1  7
77      77        36.2.3      2 3 2 3  1
78      78      510.2.34      2 3 5 4  6
79      79      640.2.43      2 1 4 1  8
80      80      832.2.56      2 1 3 2 10
81      81      817.2.55      2 1 3 1 10
82      82      228.2.16      2 3 1 4  3
83      83      687.2.46      2 3 4 4  8
84      84      626.2.42      2 2 4 6  7
85      85      373.2.25      2 1 5 1  5
86      86      242.2.17      2 2 1 5  3
87      87      611.2.41      2 2 4 5  7
88      88      742.2.50      2 1 3 2  9
89      89        94.2.7      2 1 2 1  2
90      90      434.2.29      2 2 5 5  5
91      91      774.2.52      2 3 3 4  9
92      92      495.2.33      2 3 5 3  6
93      93      332.2.23      2 2 1 5  4
94      94        80.2.6      2 2 2 6  1
95      95      478.2.32      2 1 5 2  6
96      96      181.2.13      2 1 1 1  3
97      97      155.2.11      2 2 2 5  2
98      98      449.2.30      2 2 5 6  5
99      99      257.2.18      2 2 1 6  3
100    100      759.2.51      2 3 3 3  9
101    101        51.2.4      2 3 2 4  1
102    102      539.2.36      2 2 5 6  6
103    103      727.2.49      2 1 3 1  9
104    104      286.2.20      2 1 1 2  4
105    105      672.2.45      2 3 4 3  8
106    106      701.2.47      2 2 4 5  8
107    107      788.2.53      2 2 3 5  9
108    108      878.2.59      2 2 3 5 10
109    109      582.2.39      2 3 4 3  7
110    110      213.2.15      2 3 1 3  3
111    111      716.2.48      2 2 4 6  8
112    112      271.2.19      2 1 1 1  4
113    113      524.2.35      2 2 5 5  6
114    114        19.2.2      2 1 2 2  1
115    115      141.2.10      2 3 2 4  2
116    116      463.2.31      2 1 5 1  6
117    117      303.2.21      2 3 1 3  4
118    118      388.2.26      2 1 5 2  5
119    119      803.2.54      2 2 3 6  9
120    120        65.2.5      2 2 2 5  1
run.no run.no.std.rp Blocks A B C  D
121    121      260.3.18      3 2 2 6  3
122    122      274.3.19      3 1 2 1  4
123    123        68.3.5      3 2 3 5  1
124    124      791.3.53      3 2 4 5  9
125    125      184.3.13      3 1 2 1  3
126    126      498.3.34      3 3 1 4  6
127    127        83.3.6      3 2 3 6  1
128    128      675.3.45      3 3 5 3  8
129    129      321.3.22      3 3 2 4  4
130    130      614.3.41      3 2 5 5  7
131    131      335.3.23      3 2 2 5  4
132    132      762.3.51      3 3 4 3  9
133    133        22.3.2      3 1 3 2  1
134    134      568.3.38      3 1 5 2  7
135    135      512.3.35      3 2 1 5  6
136    136      835.3.56      3 1 4 2 10
137    137      600.3.40      3 3 5 4  7
138    138      306.3.21      3 3 2 3  4
139    139      144.3.10      3 3 3 4  2
140    140      289.3.20      3 1 2 2  4
141    141      704.3.47      3 2 5 5  8
142    142      245.3.17      3 2 2 5  3
143    143      852.3.57      3 3 4 3 10
144    144      730.3.49      3 1 4 1  9
145    145      466.3.32      3 1 1 2  6
146    146      629.3.42      3 2 5 6  7
147    147      745.3.50      3 1 4 2  9
148    148      361.3.25      3 1 1 1  5
149    149      719.3.48      3 2 5 6  8
150    150      199.3.14      3 1 2 2  3
151    151      376.3.26      3 1 1 2  5
152    152      483.3.33      3 3 1 3  6
153    153        39.3.3      3 3 3 3  1
154    154      231.3.16      3 3 2 4  3
155    155      896.3.60      3 2 4 6 10
156    156      585.3.39      3 3 5 3  7
157    157      658.3.44      3 1 5 2  8
158    158      173.3.12      3 2 3 6  2
159    159      422.3.29      3 2 1 5  5
160    160      350.3.24      3 2 2 6  4
161    161         7.3.1      3 1 3 1  1
162    162      806.3.54      3 2 4 6  9
163    163      777.3.52      3 3 4 4  9
164    164      408.3.28      3 3 1 4  5
165    165      437.3.30      3 2 1 6  5
166    166       129.3.9      3 3 3 3  2
167    167      881.3.59      3 2 4 5 10
168    168      527.3.36      3 2 1 6  6
169    169      451.3.31      3 1 1 1  6
170    170       112.3.8      3 1 3 2  2
171    171      643.3.43      3 1 5 1  8
172    172      690.3.46      3 3 5 4  8
173    173      393.3.27      3 3 1 3  5
174    174      820.3.55      3 1 4 1 10
175    175      158.3.11      3 2 3 5  2
176    176        54.3.4      3 3 3 4  1
177    177      553.3.37      3 1 5 1  7
178    178        97.3.7      3 1 3 1  2
179    179      867.3.58      3 3 4 4 10
180    180      216.3.15      3 3 2 3  3
run.no run.no.std.rp Blocks A B C  D
181    181      353.4.24      4 2 3 6  4
182    182      176.4.12      4 2 4 6  2
183    183      324.4.22      4 3 3 4  4
184    184        57.4.4      4 3 4 4  1
185    185      541.4.37      4 1 1 1  7
186    186      794.4.53      4 2 5 5  9
187    187      884.4.59      4 2 5 5 10
188    188      469.4.32      4 1 2 2  6
189    189      486.4.33      4 3 2 3  6
190    190      309.4.21      4 3 3 3  4
191    191       100.4.7      4 1 4 1  2
192    192        10.4.1      4 1 4 1  1
193    193      234.4.16      4 3 3 4  3
194    194      338.4.23      4 2 3 5  4
195    195      780.4.52      4 3 5 4  9
196    196      454.4.31      4 1 2 1  6
197    197      707.4.48      4 2 1 6  8
198    198      809.4.54      4 2 5 6  9
199    199      501.4.34      4 3 2 4  6
200    200      646.4.44      4 1 1 2  8
201    201      440.4.30      4 2 2 6  5
202    202      588.4.40      4 3 1 4  7
203    203        25.4.2      4 1 4 2  1
204    204      733.4.49      4 1 5 1  9
205    205      899.4.60      4 2 5 6 10
206    206      602.4.41      4 2 1 5  7
207    207      379.4.26      4 1 2 2  5
208    208      573.4.39      4 3 1 3  7
209    209      396.4.27      4 3 2 3  5
210    210      292.4.20      4 1 3 2  4
211    211      663.4.45      4 3 1 3  8
212    212      187.4.13      4 1 3 1  3
213    213      748.4.50      4 1 5 2  9
214    214        42.4.3      4 3 4 3  1
215    215        86.4.6      4 2 4 6  1
216    216      425.4.29      4 2 2 5  5
217    217      248.4.17      4 2 3 5  3
218    218      219.4.15      4 3 3 3  3
219    219       132.4.9      4 3 4 3  2
220    220      838.4.56      4 1 5 2 10
221    221      556.4.38      4 1 1 2  7
222    222      765.4.51      4 3 5 3  9
223    223      364.4.25      4 1 2 1  5
224    224      692.4.47      4 2 1 5  8
225    225      202.4.14      4 1 3 2  3
226    226       115.4.8      4 1 4 2  2
227    227      678.4.46      4 3 1 4  8
228    228      263.4.18      4 2 3 6  3
229    229      411.4.28      4 3 2 4  5
230    230      855.4.57      4 3 5 3 10
231    231        71.4.5      4 2 4 5  1
232    232      530.4.36      4 2 2 6  6
233    233      870.4.58      4 3 5 4 10
234    234      515.4.35      4 2 2 5  6
235    235      617.4.42      4 2 1 6  7
236    236      823.4.55      4 1 5 1 10
237    237      277.4.19      4 1 3 1  4
238    238      631.4.43      4 1 1 1  8
239    239      161.4.11      4 2 4 5  2
240    240      147.4.10      4 3 4 4  2
run.no run.no.std.rp Blocks A B C  D
241    241      782.5.53      5 2 1 5  9
242    242      518.5.35      5 2 3 5  6
243    243      237.5.16      5 3 4 4  3
244    244      312.5.21      5 3 4 3  4
245    245      753.5.51      5 3 1 3  9
246    246      544.5.37      5 1 2 1  7
247    247      179.5.12      5 2 5 6  2
248    248       135.5.9      5 3 5 3  2
249    249      356.5.24      5 2 4 6  4
250    250      251.5.17      5 2 4 5  3
251    251      414.5.28      5 3 3 4  5
252    252        89.5.6      5 2 5 6  1
253    253      649.5.44      5 1 2 2  8
254    254      887.5.60      5 2 1 6 10
255    255      205.5.14      5 1 4 2  3
256    256      559.5.38      5 1 2 2  7
257    257      591.5.40      5 3 2 4  7
258    258      150.5.10      5 3 5 4  2
259    259      190.5.13      5 1 4 1  3
260    260      164.5.11      5 2 5 5  2
261    261      858.5.58      5 3 1 4 10
262    262      341.5.23      5 2 4 5  4
263    263        74.5.5      5 2 5 5  1
264    264      797.5.54      5 2 1 6  9
265    265      457.5.31      5 1 3 1  6
266    266      222.5.15      5 3 4 3  3
267    267      533.5.36      5 2 3 6  6
268    268      428.5.29      5 2 3 5  5
269    269       118.5.8      5 1 5 2  2
270    270      489.5.33      5 3 3 3  6
271    271      295.5.20      5 1 4 2  4
272    272      266.5.18      5 2 4 6  3
273    273      382.5.26      5 1 3 2  5
274    274      280.5.19      5 1 4 1  4
275    275      681.5.46      5 3 2 4  8
276    276        28.5.2      5 1 5 2  1
277    277      695.5.47      5 2 2 5  8
278    278      605.5.41      5 2 2 5  7
279    279      710.5.48      5 2 2 6  8
280    280      399.5.27      5 3 3 3  5
281    281      872.5.59      5 2 1 5 10
282    282      826.5.56      5 1 1 2 10
283    283      576.5.39      5 3 2 3  7
284    284      736.5.50      5 1 1 2  9
285    285      721.5.49      5 1 1 1  9
286    286      367.5.25      5 1 3 1  5
287    287       103.5.7      5 1 5 1  2
288    288      504.5.34      5 3 3 4  6
289    289        13.5.1      5 1 5 1  1
290    290        60.5.4      5 3 5 4  1
291    291      620.5.42      5 2 2 6  7
292    292      666.5.45      5 3 2 3  8
293    293        45.5.3      5 3 5 3  1
294    294      443.5.30      5 2 3 6  5
295    295      634.5.43      5 1 2 1  8
296    296      327.5.22      5 3 4 4  4
297    297      843.5.57      5 3 1 3 10
298    298      768.5.52      5 3 1 4  9
299    299      811.5.55      5 1 1 1 10
300    300      472.5.32      5 1 3 2  6
run.no run.no.std.rp Blocks A B C  D
301    301      136.6.10      6 1 1 4  2
302    302      876.6.59      6 3 2 5 10
303    303      754.6.51      6 1 2 3  9
304    304      624.6.42      6 3 3 6  7
305    305      386.6.26      6 2 4 2  5
306    306      769.6.52      6 1 2 4  9
307    307      168.6.12      6 3 1 6  2
308    308      284.6.19      6 2 5 1  4
309    309        31.6.3      6 1 1 3  1
310    310      714.6.48      6 3 3 6  8
311    311        46.6.4      6 1 1 4  1
312    312      270.6.18      6 3 5 6  3
313    313      891.6.60      6 3 2 6 10
314    314      682.6.46      6 1 3 4  8
315    315        17.6.2      6 2 1 2  1
316    316      548.6.37      6 2 3 1  7
317    317      194.6.13      6 2 5 1  3
318    318      667.6.45      6 1 3 3  8
319    319      209.6.14      6 2 5 2  3
320    320        78.6.6      6 3 1 6  1
321    321      505.6.34      6 1 4 4  6
322    322      255.6.17      6 3 5 5  3
323    323       107.6.8      6 2 1 2  2
324    324       121.6.9      6 1 1 3  2
325    325      740.6.50      6 2 2 2  9
326    326      415.6.28      6 1 4 4  5
327    327      786.6.53      6 3 2 5  9
328    328      859.6.58      6 1 2 4 10
329    329        92.6.7      6 2 1 1  2
330    330      609.6.41      6 3 3 5  7
331    331      815.6.55      6 2 2 1 10
332    332      801.6.54      6 3 2 6  9
333    333      522.6.35      6 3 4 5  6
334    334      725.6.49      6 2 2 1  9
335    335      844.6.57      6 1 2 3 10
336    336      299.6.20      6 2 5 2  4
337    337      238.6.16      6 1 5 4  3
338    338      360.6.24      6 3 5 6  4
339    339      447.6.30      6 3 4 6  5
340    340      328.6.22      6 1 5 4  4
341    341      223.6.15      6 1 5 3  3
342    342      345.6.23      6 3 5 5  4
343    343      577.6.39      6 1 3 3  7
344    344      563.6.38      6 2 3 2  7
345    345      830.6.56      6 2 2 2 10
346    346      490.6.33      6 1 4 3  6
347    347      153.6.11      6 3 1 5  2
348    348      313.6.21      6 1 5 3  4
349    349      592.6.40      6 1 3 4  7
350    350      432.6.29      6 3 4 5  5
351    351      537.6.36      6 3 4 6  6
352    352      699.6.47      6 3 3 5  8
353    353        63.6.5      6 3 1 5  1
354    354      371.6.25      6 2 4 1  5
355    355      638.6.43      6 2 3 1  8
356    356      653.6.44      6 2 3 2  8
357    357      476.6.32      6 2 4 2  6
358    358      400.6.27      6 1 4 3  5
359    359      461.6.31      6 2 4 1  6
360    360         2.6.1      6 2 1 1  1
run.no run.no.std.rp Blocks A B C  D
361    361      743.7.50      7 2 3 2  9
362    362      566.7.38      7 2 4 2  7
363    363         5.7.1      7 2 2 1  1
364    364      243.7.17      7 3 1 5  3
365    365      182.7.13      7 2 1 1  3
366    366      818.7.55      7 2 3 1 10
367    367      464.7.31      7 2 5 1  6
368    368      493.7.33      7 1 5 3  6
369    369      894.7.60      7 3 3 6 10
370    370      287.7.20      7 2 1 2  4
371    371        49.7.4      7 1 2 4  1
372    372      580.7.39      7 1 4 3  7
373    373      389.7.26      7 2 5 2  5
374    374      171.7.12      7 3 2 6  2
375    375      717.7.48      7 3 4 6  8
376    376      333.7.23      7 3 1 5  4
377    377      804.7.54      7 3 3 6  9
378    378      525.7.35      7 3 5 5  6
379    379      670.7.45      7 1 4 3  8
380    380      627.7.42      7 3 4 6  7
381    381      479.7.32      7 2 5 2  6
382    382        34.7.3      7 1 2 3  1
383    383      757.7.51      7 1 3 3  9
384    384       124.7.9      7 1 2 3  2
385    385      612.7.41      7 3 4 5  7
386    386      258.7.18      7 3 1 6  3
387    387        20.7.2      7 2 2 2  1
388    388      156.7.11      7 3 2 5  2
389    389      656.7.44      7 2 4 2  8
390    390      211.7.15      7 1 1 3  3
391    391      435.7.29      7 3 5 5  5
392    392      551.7.37      7 2 4 1  7
393    393      728.7.49      7 2 3 1  9
394    394      418.7.28      7 1 5 4  5
395    395      641.7.43      7 2 4 1  8
396    396      862.7.58      7 1 3 4 10
397    397      685.7.46      7 1 4 4  8
398    398      540.7.36      7 3 5 6  6
399    399      226.7.16      7 1 1 4  3
400    400      316.7.22      7 1 1 4  4
401    401      197.7.14      7 2 1 2  3
402    402        95.7.7      7 2 2 1  2
403    403      847.7.57      7 1 3 3 10
404    404      879.7.59      7 3 3 5 10
405    405        66.7.5      7 3 2 5  1
406    406      348.7.24      7 3 1 6  4
407    407      450.7.30      7 3 5 6  5
408    408      789.7.53      7 3 3 5  9
409    409      833.7.56      7 2 3 2 10
410    410        81.7.6      7 3 2 6  1
411    411      374.7.25      7 2 5 1  5
412    412      272.7.19      7 2 1 1  4
413    413      702.7.47      7 3 4 5  8
414    414      595.7.40      7 1 4 4  7
415    415      403.7.27      7 1 5 3  5
416    416       110.7.8      7 2 2 2  2
417    417      139.7.10      7 1 2 4  2
418    418      772.7.52      7 1 3 4  9
419    419      508.7.34      7 1 5 4  6
420    420      301.7.21      7 1 1 3  4
run.no run.no.std.rp Blocks A B C  D
421    421      644.8.43      8 2 5 1  8
422    422        23.8.2      8 2 3 2  1
423    423        84.8.6      8 3 3 6  1
424    424      142.8.10      8 1 3 4  2
425    425       127.8.9      8 1 3 3  2
426    426      760.8.51      8 1 4 3  9
427    427      438.8.30      8 3 1 6  5
428    428      630.8.42      8 3 5 6  7
429    429      528.8.36      8 3 1 6  6
430    430      496.8.34      8 1 1 4  6
431    431      200.8.14      8 2 2 2  3
432    432      423.8.29      8 3 1 5  5
433    433      185.8.13      8 2 2 1  3
434    434      406.8.28      8 1 1 4  5
435    435      720.8.48      8 3 5 6  8
436    436        98.8.7      8 2 3 1  2
437    437      290.8.20      8 2 2 2  4
438    438        37.8.3      8 1 3 3  1
439    439      319.8.22      8 1 2 4  4
440    440      452.8.31      8 2 1 1  6
441    441      807.8.54      8 3 4 6  9
442    442      821.8.55      8 2 4 1 10
443    443      569.8.38      8 2 5 2  7
444    444      362.8.25      8 2 1 1  5
445    445         8.8.1      8 2 3 1  1
446    446      246.8.17      8 3 2 5  3
447    447       113.8.8      8 2 3 2  2
448    448      174.8.12      8 3 3 6  2
449    449      731.8.49      8 2 4 1  9
450    450      304.8.21      8 1 2 3  4
451    451      688.8.46      8 1 5 4  8
452    452      598.8.40      8 1 5 4  7
453    453      897.8.60      8 3 4 6 10
454    454      659.8.44      8 2 5 2  8
455    455      481.8.33      8 1 1 3  6
456    456      882.8.59      8 3 4 5 10
457    457      583.8.39      8 1 5 3  7
458    458      159.8.11      8 3 3 5  2
459    459      836.8.56      8 2 4 2 10
460    460      673.8.45      8 1 5 3  8
461    461        52.8.4      8 1 3 4  1
462    462        69.8.5      8 3 3 5  1
463    463      865.8.58      8 1 4 4 10
464    464      391.8.27      8 1 1 3  5
465    465      467.8.32      8 2 1 2  6
466    466      775.8.52      8 1 4 4  9
467    467      746.8.50      8 2 4 2  9
468    468      705.8.47      8 3 5 5  8
469    469      261.8.18      8 3 2 6  3
470    470      377.8.26      8 2 1 2  5
471    471      229.8.16      8 1 2 4  3
472    472      513.8.35      8 3 1 5  6
473    473      336.8.23      8 3 2 5  4
474    474      275.8.19      8 2 2 1  4
475    475      214.8.15      8 1 2 3  3
476    476      351.8.24      8 3 2 6  4
477    477      850.8.57      8 1 4 3 10
478    478      615.8.41      8 3 5 5  7
479    479      792.8.53      8 3 4 5  9
480    480      554.8.37      8 2 5 1  7
run.no run.no.std.rp Blocks A B C  D
481    481      571.9.39      9 1 1 3  7
482    482      394.9.27      9 1 2 3  5
483    483      232.9.16      9 1 3 4  3
484    484      734.9.49      9 2 5 1  9
485    485      676.9.46      9 1 1 4  8
486    486       116.9.8      9 2 4 2  2
487    487      824.9.55      9 2 5 1 10
488    488        72.9.5      9 3 4 5  1
489    489      264.9.18      9 3 3 6  3
490    490       101.9.7      9 2 4 1  2
491    491      868.9.58      9 1 5 4 10
492    492      885.9.59      9 3 5 5 10
493    493      339.9.23      9 3 3 5  4
494    494      647.9.44      9 2 1 2  8
495    495      661.9.45      9 1 1 3  8
496    496      441.9.30      9 3 2 6  5
497    497      455.9.31      9 2 2 1  6
498    498      853.9.57      9 1 5 3 10
499    499      203.9.14      9 2 3 2  3
500    500        26.9.2      9 2 4 2  1
501    501      900.9.60      9 3 5 6 10
502    502      470.9.32      9 2 2 2  6
503    503      586.9.40      9 1 1 4  7
504    504      162.9.11      9 3 4 5  2
505    505      322.9.22      9 1 3 4  4
506    506      693.9.47      9 3 1 5  8
507    507      708.9.48      9 3 1 6  8
508    508      749.9.50      9 2 5 2  9
509    509      603.9.41      9 3 1 5  7
510    510      293.9.20      9 2 3 2  4
511    511      618.9.42      9 3 1 6  7
512    512      188.9.13      9 2 3 1  3
513    513      795.9.53      9 3 5 5  9
514    514      632.9.43      9 2 1 1  8
515    515      365.9.25      9 2 2 1  5
516    516      484.9.33      9 1 2 3  6
517    517      177.9.12      9 3 4 6  2
518    518      380.9.26      9 2 2 2  5
519    519      426.9.29      9 3 2 5  5
520    520      516.9.35      9 3 2 5  6
521    521      763.9.51      9 1 5 3  9
522    522      810.9.54      9 3 5 6  9
523    523      409.9.28      9 1 2 4  5
524    524        55.9.4      9 1 4 4  1
525    525      531.9.36      9 3 2 6  6
526    526      307.9.21      9 1 3 3  4
527    527      499.9.34      9 1 2 4  6
528    528      354.9.24      9 3 3 6  4
529    529      557.9.38      9 2 1 2  7
530    530      542.9.37      9 2 1 1  7
531    531        11.9.1      9 2 4 1  1
532    532      778.9.52      9 1 5 4  9
533    533        87.9.6      9 3 4 6  1
534    534      278.9.19      9 2 3 1  4
535    535        40.9.3      9 1 4 3  1
536    536      145.9.10      9 1 4 4  2
537    537      217.9.15      9 1 3 3  3
538    538      839.9.56      9 2 5 2 10
539    539       130.9.9      9 1 4 3  2
540    540      249.9.17      9 3 3 5  3
run.no run.no.std.rp Blocks A B C  D
541    541     444.10.30     10 3 3 6  5
542    542     281.10.19     10 2 4 1  4
543    543     220.10.15     10 1 4 3  3
544    544     235.10.16     10 1 4 4  3
545    545     621.10.42     10 3 2 6  7
546    546     519.10.35     10 3 3 5  6
547    547     751.10.51     10 1 1 3  9
548    548      133.10.9     10 1 5 3  2
549    549     296.10.20     10 2 4 2  4
550    550      104.10.7     10 2 5 1  2
551    551     165.10.11     10 3 5 5  2
552    552     650.10.44     10 2 2 2  8
553    553     696.10.47     10 3 2 5  8
554    554     783.10.53     10 3 1 5  9
555    555     606.10.41     10 3 2 5  7
556    556     502.10.34     10 1 3 4  6
557    557       29.10.2     10 2 5 2  1
558    558       14.10.1     10 2 5 1  1
559    559     722.10.49     10 2 1 1  9
560    560     191.10.13     10 2 4 1  3
561    561     357.10.24     10 3 4 6  4
562    562     310.10.21     10 1 4 3  4
563    563      119.10.8     10 2 5 2  2
564    564     560.10.38     10 2 2 2  7
565    565     180.10.12     10 3 5 6  2
566    566     635.10.43     10 2 2 1  8
567    567     412.10.28     10 1 3 4  5
568    568     534.10.36     10 3 3 6  6
569    569     383.10.26     10 2 3 2  5
570    570     873.10.59     10 3 1 5 10
571    571     458.10.31     10 2 3 1  6
572    572     841.10.57     10 1 1 3 10
573    573     827.10.56     10 2 1 2 10
574    574       90.10.6     10 3 5 6  1
575    575     342.10.23     10 3 4 5  4
576    576     856.10.58     10 1 1 4 10
577    577     888.10.60     10 3 1 6 10
578    578     487.10.33     10 1 3 3  6
579    579     473.10.32     10 2 3 2  6
580    580     798.10.54     10 3 1 6  9
581    581     737.10.50     10 2 1 2  9
582    582     574.10.39     10 1 2 3  7
583    583     368.10.25     10 2 3 1  5
584    584     267.10.18     10 3 4 6  3
585    585     397.10.27     10 1 3 3  5
586    586     545.10.37     10 2 2 1  7
587    587     589.10.40     10 1 2 4  7
588    588     206.10.14     10 2 4 2  3
589    589     812.10.55     10 2 1 1 10
590    590     679.10.46     10 1 2 4  8
591    591       43.10.3     10 1 5 3  1
592    592     325.10.22     10 1 4 4  4
593    593     711.10.48     10 3 2 6  8
594    594     252.10.17     10 3 4 5  3
595    595       75.10.5     10 3 5 5  1
596    596     766.10.52     10 1 1 4  9
597    597     148.10.10     10 1 5 4  2
598    598     664.10.45     10 1 2 3  8
599    599       58.10.4     10 1 5 4  1
600    600     429.10.29     10 3 3 5  5
run.no run.no.std.rp Blocks A B C  D
601    601     593.11.40     11 2 3 4  7
602    602     535.11.36     11 1 4 6  6
603    603     358.11.24     11 1 5 6  4
604    604     889.11.60     11 1 2 6 10
605    605     683.11.46     11 2 3 4  8
606    606     712.11.48     11 1 3 6  8
607    607     285.11.19     11 3 5 1  4
608    608       32.11.3     11 2 1 3  1
609    609     224.11.15     11 2 5 3  3
610    610     329.11.22     11 2 5 4  4
611    611     874.11.59     11 1 2 5 10
612    612     372.11.25     11 3 4 1  5
613    613       47.11.4     11 2 1 4  1
614    614     697.11.47     11 1 3 5  8
615    615     622.11.42     11 1 3 6  7
616    616     564.11.38     11 3 3 2  7
617    617     607.11.41     11 1 3 5  7
618    618     755.11.51     11 2 2 3  9
619    619     726.11.49     11 3 2 1  9
620    620       61.11.5     11 1 1 5  1
621    621     549.11.37     11 3 3 1  7
622    622     860.11.58     11 2 2 4 10
623    623     654.11.44     11 3 3 2  8
624    624     166.11.12     11 1 1 6  2
625    625     506.11.34     11 2 4 4  6
626    626      108.11.8     11 3 1 2  2
627    627     491.11.33     11 2 4 3  6
628    628     387.11.26     11 3 4 2  5
629    629     343.11.23     11 1 5 5  4
630    630     314.11.21     11 2 5 3  4
631    631     741.11.50     11 3 2 2  9
632    632     268.11.18     11 1 5 6  3
633    633     639.11.43     11 3 3 1  8
634    634     195.11.13     11 3 5 1  3
635    635     816.11.55     11 3 2 1 10
636    636     210.11.14     11 3 5 2  3
637    637       18.11.2     11 3 1 2  1
638    638     416.11.28     11 2 4 4  5
639    639     668.11.45     11 2 3 3  8
640    640        3.11.1     11 3 1 1  1
641    641     239.11.16     11 2 5 4  3
642    642     137.11.10     11 2 1 4  2
643    643     300.11.20     11 3 5 2  4
644    644     770.11.52     11 2 2 4  9
645    645       93.11.7     11 3 1 1  2
646    646     462.11.31     11 3 4 1  6
647    647       76.11.6     11 1 1 6  1
648    648     445.11.30     11 1 4 6  5
649    649     253.11.17     11 1 5 5  3
650    650     578.11.39     11 2 3 3  7
651    651     520.11.35     11 1 4 5  6
652    652     831.11.56     11 3 2 2 10
653    653     784.11.53     11 1 2 5  9
654    654      122.11.9     11 2 1 3  2
655    655     430.11.29     11 1 4 5  5
656    656     799.11.54     11 1 2 6  9
657    657     477.11.32     11 3 4 2  6
658    658     401.11.27     11 2 4 3  5
659    659     845.11.57     11 2 2 3 10
660    660     151.11.11     11 1 1 5  2
run.no run.no.std.rp Blocks A B C  D
661    661     480.12.32     12 3 5 2  6
662    662     848.12.57     12 2 3 3 10
663    663     863.12.58     12 2 3 4 10
664    664     758.12.51     12 2 3 3  9
665    665     625.12.42     12 1 4 6  7
666    666     433.12.29     12 1 5 5  5
667    667       64.12.5     12 1 2 5  1
668    668     390.12.26     12 3 5 2  5
669    669       79.12.6     12 1 2 6  1
670    670     140.12.10     12 2 2 4  2
671    671     686.12.46     12 2 4 4  8
672    672     241.12.17     12 1 1 5  3
673    673     212.12.15     12 2 1 3  3
674    674     610.12.41     12 1 4 5  7
675    675     642.12.43     12 3 4 1  8
676    676     169.12.12     12 1 2 6  2
677    677     877.12.59     12 1 3 5 10
678    678     256.12.18     12 1 1 6  3
679    679     802.12.54     12 1 3 6  9
680    680     657.12.44     12 3 4 2  8
681    681     302.12.21     12 2 1 3  4
682    682     404.12.27     12 2 5 3  5
683    683     288.12.20     12 3 1 2  4
684    684     154.12.11     12 1 2 5  2
685    685     819.12.55     12 3 3 1 10
686    686     346.12.24     12 1 1 6  4
687    687     671.12.45     12 2 4 3  8
688    688     448.12.30     12 1 5 6  5
689    689      125.12.9     12 2 2 3  2
690    690       35.12.3     12 2 2 3  1
691    691     700.12.47     12 1 4 5  8
692    692     198.12.14     12 3 1 2  3
693    693     567.12.38     12 3 4 2  7
694    694     773.12.52     12 2 3 4  9
695    695        6.12.1     12 3 2 1  1
696    696     596.12.40     12 2 4 4  7
697    697     331.12.23     12 1 1 5  4
698    698       21.12.2     12 3 2 2  1
699    699     227.12.16     12 2 1 4  3
700    700     465.12.31     12 3 5 1  6
701    701     273.12.19     12 3 1 1  4
702    702     715.12.48     12 1 4 6  8
703    703     317.12.22     12 2 1 4  4
704    704     744.12.50     12 3 3 2  9
705    705     375.12.25     12 3 5 1  5
706    706       96.12.7     12 3 2 1  2
707    707     834.12.56     12 3 3 2 10
708    708     419.12.28     12 2 5 4  5
709    709     581.12.39     12 2 4 3  7
710    710     509.12.34     12 2 5 4  6
711    711     892.12.60     12 1 3 6 10
712    712       50.12.4     12 2 2 4  1
713    713      111.12.8     12 3 2 2  2
714    714     523.12.35     12 1 5 5  6
715    715     729.12.49     12 3 3 1  9
716    716     494.12.33     12 2 5 3  6
717    717     552.12.37     12 3 4 1  7
718    718     538.12.36     12 1 5 6  6
719    719     183.12.13     12 3 1 1  3
720    720     787.12.53     12 1 3 5  9
run.no run.no.std.rp Blocks A B C  D
721    721     392.13.27     13 2 1 3  5
722    722     186.13.13     13 3 2 1  3
723    723     320.13.22     13 2 2 4  4
724    724     215.13.15     13 2 2 3  3
725    725     526.13.36     13 1 1 6  6
726    726     349.13.24     13 1 2 6  4
727    727     305.13.21     13 2 2 3  4
728    728     497.13.34     13 2 1 4  6
729    729     230.13.16     13 2 2 4  3
730    730        9.13.1     13 3 3 1  1
731    731      114.13.8     13 3 3 2  2
732    732     259.13.18     13 1 2 6  3
733    733     453.13.31     13 3 1 1  6
734    734     851.13.57     13 2 4 3 10
735    735     599.13.40     13 2 5 4  7
736    736     421.13.29     13 1 1 5  5
737    737     378.13.26     13 3 1 2  5
738    738       82.13.6     13 1 3 6  1
739    739     276.13.19     13 3 2 1  4
740    740     689.13.46     13 2 5 4  8
741    741     761.13.51     13 2 4 3  9
742    742     613.13.41     13 1 5 5  7
743    743     674.13.45     13 2 5 3  8
744    744     407.13.28     13 2 1 4  5
745    745     363.13.25     13 3 1 1  5
746    746       24.13.2     13 3 3 2  1
747    747       53.13.4     13 2 3 4  1
748    748     628.13.42     13 1 5 6  7
749    749     570.13.38     13 3 5 2  7
750    750       38.13.3     13 2 3 3  1
751    751     555.13.37     13 3 5 1  7
752    752     201.13.14     13 3 2 2  3
753    753     703.13.47     13 1 5 5  8
754    754     511.13.35     13 1 1 5  6
755    755     244.13.17     13 1 2 5  3
756    756     718.13.48     13 1 5 6  8
757    757     776.13.52     13 2 4 4  9
758    758       99.13.7     13 3 3 1  2
759    759     837.13.56     13 3 4 2 10
760    760     805.13.54     13 1 4 6  9
761    761     436.13.30     13 1 1 6  5
762    762     157.13.11     13 1 3 5  2
763    763     291.13.20     13 3 2 2  4
764    764     790.13.53     13 1 4 5  9
765    765     660.13.44     13 3 5 2  8
766    766     895.13.60     13 1 4 6 10
767    767     866.13.58     13 2 4 4 10
768    768     482.13.33     13 2 1 3  6
769    769     645.13.43     13 3 5 1  8
770    770       67.13.5     13 1 3 5  1
771    771     584.13.39     13 2 5 3  7
772    772     468.13.32     13 3 1 2  6
773    773     822.13.55     13 3 4 1 10
774    774      128.13.9     13 2 3 3  2
775    775     143.13.10     13 2 3 4  2
776    776     880.13.59     13 1 4 5 10
777    777     334.13.23     13 1 2 5  4
778    778     747.13.50     13 3 4 2  9
779    779     732.13.49     13 3 4 1  9
780    780     172.13.12     13 1 3 6  2
run.no run.no.std.rp Blocks A B C  D
781    781     279.14.19     14 3 3 1  4
782    782     869.14.58     14 2 5 4 10
783    783     616.14.42     14 1 1 6  7
784    784     395.14.27     14 2 2 3  5
785    785     218.14.15     14 2 3 3  3
786    786     471.14.32     14 3 2 2  6
787    787     410.14.28     14 2 2 4  5
788    788     601.14.41     14 1 1 5  7
789    789       41.14.3     14 2 4 3  1
790    790     366.14.25     14 3 2 1  5
791    791     735.14.49     14 3 5 1  9
792    792     381.14.26     14 3 2 2  5
793    793      131.14.9     14 2 4 3  2
794    794     233.14.16     14 2 3 4  3
795    795     337.14.23     14 1 3 5  4
796    796       27.14.2     14 3 4 2  1
797    797     529.14.36     14 1 2 6  6
798    798     543.14.37     14 3 1 1  7
799    799     500.14.34     14 2 2 4  6
800    800     439.14.30     14 1 2 6  5
801    801     648.14.44     14 3 1 2  8
802    802     633.14.43     14 3 1 1  8
803    803     456.14.31     14 3 2 1  6
804    804     883.14.59     14 1 5 5 10
805    805     485.14.33     14 2 2 3  6
806    806     691.14.47     14 1 1 5  8
807    807      102.14.7     14 3 4 1  2
808    808     840.14.56     14 3 5 2 10
809    809     424.14.29     14 1 2 5  5
810    810     706.14.48     14 1 1 6  8
811    811     808.14.54     14 1 5 6  9
812    812     262.14.18     14 1 3 6  3
813    813     204.14.14     14 3 3 2  3
814    814     764.14.51     14 2 5 3  9
815    815     146.14.10     14 2 4 4  2
816    816      117.14.8     14 3 4 2  2
817    817     514.14.35     14 1 2 5  6
818    818     854.14.57     14 2 5 3 10
819    819     160.14.11     14 1 4 5  2
820    820     779.14.52     14 2 5 4  9
821    821     175.14.12     14 1 4 6  2
822    822     308.14.21     14 2 3 3  4
823    823     294.14.20     14 3 3 2  4
824    824     825.14.55     14 3 5 1 10
825    825     572.14.39     14 2 1 3  7
826    826     793.14.53     14 1 5 5  9
827    827     587.14.40     14 2 1 4  7
828    828     750.14.50     14 3 5 2  9
829    829       70.14.5     14 1 4 5  1
830    830     662.14.45     14 2 1 3  8
831    831     352.14.24     14 1 3 6  4
832    832     677.14.46     14 2 1 4  8
833    833     558.14.38     14 3 1 2  7
834    834     323.14.22     14 2 3 4  4
835    835     189.14.13     14 3 3 1  3
836    836     247.14.17     14 1 3 5  3
837    837       56.14.4     14 2 4 4  1
838    838     898.14.60     14 1 5 6 10
839    839       85.14.6     14 1 4 6  1
840    840       12.14.1     14 3 4 1  1
run.no run.no.std.rp Blocks A B C  D
841    841      120.15.8     15 3 5 2  2
842    842     886.15.60     15 1 1 6 10
843    843     651.15.44     15 3 2 2  8
844    844     221.15.15     15 2 4 3  3
845    845     619.15.42     15 1 2 6  7
846    846     326.15.22     15 2 4 4  4
847    847       15.15.1     15 3 5 1  1
848    848     665.15.45     15 2 2 3  8
849    849       44.15.3     15 2 5 3  1
850    850     723.15.49     15 3 1 1  9
851    851       30.15.2     15 3 5 2  1
852    852     857.15.58     15 2 1 4 10
853    853     311.15.21     15 2 4 3  4
854    854     503.15.34     15 2 3 4  6
855    855     265.15.18     15 1 4 6  3
856    856     297.15.20     15 3 4 2  4
857    857     250.15.17     15 1 4 5  3
858    858     590.15.40     15 2 2 4  7
859    859     871.15.59     15 1 1 5 10
860    860     474.15.32     15 3 3 2  6
861    861     575.15.39     15 2 2 3  7
862    862       88.15.6     15 1 5 6  1
863    863     767.15.52     15 2 1 4  9
864    864     413.15.28     15 2 3 4  5
865    865     163.15.11     15 1 5 5  2
866    866     604.15.41     15 1 2 5  7
867    867     752.15.51     15 2 1 3  9
868    868      134.15.9     15 2 5 3  2
869    869     178.15.12     15 1 5 6  2
870    870     459.15.31     15 3 3 1  6
871    871     340.15.23     15 1 4 5  4
872    872     694.15.47     15 1 2 5  8
873    873     236.15.16     15 2 4 4  3
874    874     828.15.56     15 3 1 2 10
875    875     738.15.50     15 3 1 2  9
876    876     709.15.48     15 1 2 6  8
877    877     680.15.46     15 2 2 4  8
878    878     796.15.54     15 1 1 6  9
879    879     282.15.19     15 3 4 1  4
880    880     192.15.13     15 3 4 1  3
881    881     149.15.10     15 2 5 4  2
882    882       59.15.4     15 2 5 4  1
883    883     813.15.55     15 3 1 1 10
884    884     427.15.29     15 1 3 5  5
885    885     488.15.33     15 2 3 3  6
886    886     517.15.35     15 1 3 5  6
887    887     842.15.57     15 2 1 3 10
888    888      105.15.7     15 3 5 1  2
889    889     384.15.26     15 3 3 2  5
890    890     781.15.53     15 1 1 5  9
891    891     398.15.27     15 2 3 3  5
892    892     442.15.30     15 1 3 6  5
893    893     546.15.37     15 3 2 1  7
894    894     532.15.36     15 1 3 6  6
895    895       73.15.5     15 1 5 5  1
896    896     207.15.14     15 3 4 2  3
897    897     561.15.38     15 3 2 2  7
898    898     636.15.43     15 3 2 1  8
899    899     369.15.25     15 3 3 1  5
900    900     355.15.24     15 1 4 6  4
class=design, type= full factorial.blocked
NOTE: columns run.no and run.no.std.rp  are annotation,
not part of the data frame
Warning messages:
1: In fac.design(nlevels = c(3, 5, 6, 10), blocks = 15, seed = 12345) :
confounding of blocks with 2-factor interactions
2: In fac.design(nlevels = c(3, 5, 6, 10), blocks = 15, seed = 12345) :
confounding of blocks with 2-factor interactions
Call:
fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 6, block.gen = G,
seed = 12345)

Experimental design of type  full factorial.blocked
216  runs
blocked design with  6  blocks of size  36

Confounding of  2 -level pseudo-factors with blocks
(each row gives one independent confounded effect):
A  B  C  D E1 E2
1  1  0  0  1  0

Confounding of  3 -level pseudo-factors with blocks
(each row gives one independent confounded effect):
A  B  C  D E1 E2
0  0  1  1  0  1

Factor settings (scale ends):
A B C D E
1 1 1 1 1 1
2 2 2 2 2 2
3     3 3 3
4         4
5         5
6         6
Model :
1:nrow(plan.6blocks) ~ Blocks + (A + B + C + D + E)^2

Call:
fac.design(nlevels = c(2, 2, 3, 3, 6), blocks = 9, block.gen = G,
seed = 12345)

Experimental design of type  full factorial.blocked
216  runs
blocked design with  9  blocks of size  24

Confounding of  3 -level pseudo-factors with blocks
(each row gives one independent confounded effect):
A B C D E1 E2
[1,] 0 0 1 1  0  0
[2,] 0 0 1 0  0  1
[3,] 0 0 0 1  0  2
[4,] 0 0 1 2  0  2

Factor settings (scale ends):
A B C D E
1 1 1 1 1 1
2 2 2 2 2 2
3     3 3 3
4         4
5         5
6         6
Model :
1:nrow(plan.9blocks) ~ Blocks + (A + B + C + D + E)^2

Complete :
(Intercept)        Blocks2            Blocks3
C.L:D.Q           -571/989                  0                  0
C.Q:D.Q               -1/3                  0                  0
C.L:E^5 -23384789/24999391                  0      325078/115841
C.Q:E^5            209/129   -5896813/1819796           -337/208
D.L:E^5        -13455/7192      325078/115841      325078/115841
D.Q:E^5                  0            209/129           -337/208
Blocks4            Blocks5            Blocks6
C.L:D.Q      564719/489061      564719/489061      564719/489061
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0      325078/115841
C.Q:E^5                  0   -5896813/1819796           -337/208
D.L:E^5      325078/115841                  0      325078/115841
D.Q:E^5           -337/208                  0            209/129
Blocks7            Blocks8            Blocks9
C.L:D.Q            209/362            209/362            209/362
C.Q:D.Q                  1                  1                  1
C.L:E^5                  0                  0      325078/115841
C.Q:E^5                  0   -5896813/1819796           -337/208
D.L:E^5      325078/115841      325078/115841                  0
D.Q:E^5            209/129           -337/208                  0
A1                 B1                 C.L
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
C.Q                D.L                D.Q
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
E.L                E.Q                E.C
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
E^4                E^5                A1:B1
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
A1:C.L             A1:C.Q             A1:D.L
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
A1:D.Q             A1:E.L             A1:E.Q
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
A1:E.C             A1:E^4             A1:E^5
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
B1:C.L             B1:C.Q             B1:D.L
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
B1:D.Q             B1:E.L             B1:E.Q
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
B1:E.C             B1:E^4             B1:E^5
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
C.L:D.L            C.Q:D.L            C.L:E.L
C.L:D.Q                  0                 -1                  0
C.Q:D.Q                  1                  0                  0
C.L:E^5                  0                  0         21759/5734
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
C.Q:E.L            C.L:E.Q            C.Q:E.Q
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                 -3
C.Q:E^5         21759/5734                  3                  0
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
C.L:E.C            C.Q:E.C            C.L:E^4
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5         -4117/6959                  0                  0
C.Q:E^5                  0         -4117/6959       -35113/13515
D.L:E^5                  0                  0                  0
D.Q:E^5                  0                  0                  0
C.Q:E^4            D.L:E.L            D.Q:E.L
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5         13775/5302                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0         21759/5734                  0
D.Q:E^5                  0                  0         21759/5734
D.L:E.Q            D.Q:E.Q            D.L:E.C
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  3         -4117/6959
D.Q:E^5                 -3                  0                  0
D.Q:E.C            D.L:E^4            D.Q:E^4
C.L:D.Q                  0                  0                  0
C.Q:D.Q                  0                  0                  0
C.L:E^5                  0                  0                  0
C.Q:E^5                  0                  0                  0
D.L:E^5                  0                  0       -35113/13515
D.Q:E^5         -4117/6959         13775/5302                  0
```

DoE.base documentation built on Aug. 23, 2018, 1:03 a.m.