Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----message = FALSE----------------------------------------------------------
library("DynForest")
data(data_simu1)
head(data_simu1)
## -----------------------------------------------------------------------------
data(data_simu2)
head(data_simu2)
## ----eval = FALSE-------------------------------------------------------------
# timeData_train <- data_simu1[,c("id","time",
# paste0("marker",seq(6)))]
# timeVarModel <- lapply(paste0("marker",seq(6)),
# FUN = function(x){
# fixed <- reformulate(termlabels = "time",
# response = x)
# random <- ~ time
# return(list(fixed = fixed, random = random))
# })
# fixedData_train <- unique(data_simu1[,c("id",
# "cont_covar1","cont_covar2",
# "bin_covar1","bin_covar2")])
## ----eval = FALSE-------------------------------------------------------------
# Y <- list(type = "numeric",
# Y = unique(data_simu1[,c("id","Y_res")]))
## ----eval = FALSE-------------------------------------------------------------
# res_dyn <- dynforest(timeData = timeData_train,
# fixedData = fixedData_train,
# timeVar = "time", idVar = "id",
# timeVarModel = timeVarModel,
# mtry = 10, Y = Y,
# ncores = 7, seed = 1234)
## ----eval = FALSE-------------------------------------------------------------
# res_dyn_OOB <- compute_ooberror(dynforest_obj = res_dyn)
## ----eval = FALSE, echo = TRUE------------------------------------------------
# summary(res_dyn_OOB)
#
# dynforest executed for continuous outcome
# Splitting rule: Minimize weighted within-group variance
# Out-of-bag error type: Mean square error
# Leaf statistic: Mean
# ----------------
# Input
# Number of subjects: 200
# Longitudinal: 6 predictor(s)
# Numeric: 2 predictor(s)
# Factor: 2 predictor(s)
# ----------------
# Tuning parameters
# mtry: 10
# nodesize: 1
# ntree: 200
# ----------------
# ----------------
# dynforest summary
# Average depth per tree: 9.06
# Average number of leaves per tree: 126.47
# Average number of subjects per leaf: 1
# ----------------
# Out-of-bag error based on Mean square error
# Out-of-bag error: 4.3713
# ----------------
# Computation time
# Number of cores used: 7
# Time difference of 8.261093 mins
# ----------------
## ----eval = FALSE-------------------------------------------------------------
# timeData_pred <- data_simu2[,c("id","time",
# paste0("marker",seq(6)))]
# fixedData_pred <- unique(data_simu2[,c("id","cont_covar1","cont_covar2",
# "bin_covar1","bin_covar2")])
# pred_dyn <- predict(object = res_dyn,
# timeData = timeData_pred,
# fixedData = fixedData_pred,
# idVar = "id", timeVar = "time")
## ----eval = FALSE, echo = TRUE------------------------------------------------
# head(print(pred_dyn))
#
# 1 2 3 4 5 6
# 5.2184031 -1.2786887 0.8591368 1.5115312 5.2984117 7.9073981
## ----eval = FALSE, echo = TRUE, fig.show='hide'-------------------------------
# depth_dyn <- compute_vardepth(dynforest_obj = res_dyn)
# p1 <- plot(depth_dyn, plot_level = "predictor")
# p2 <- plot(depth_dyn, plot_level = "feature")
## ----eval = FALSE, echo = TRUE------------------------------------------------
# plot_grid(p1, p2, labels = c("A", "B"))
## ----DynForestRdepthscalar, fig.cap = "Figure 1: Average minimal depth level by predictor (A) and by feature (B).", eval = TRUE, echo = FALSE, out.width="70%"----
knitr::include_graphics("Figures/DynForestR_reg_mindepth.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.