gbm_dia: Train a Gradient Boosting Machine (GBM) Model for...

View source: R/diagnosis.R

gbm_diaR Documentation

Train a Gradient Boosting Machine (GBM) Model for Classification

Description

Trains a Gradient Boosting Machine (GBM) model using caret::train for binary classification.

Usage

gbm_dia(X, y, tune = FALSE, cv_folds = 5)

Arguments

X

A data frame of features.

y

A factor vector of class labels.

tune

Logical, whether to perform hyperparameter tuning for interaction.depth, n.trees, and shrinkage (if TRUE) or use fixed values (if FALSE).

cv_folds

An integer, the number of cross-validation folds for caret.

Value

A caret::train object representing the trained GBM model.

Examples


set.seed(42)
n_obs <- 200
X_toy <- data.frame(
  FeatureA = rnorm(n_obs),
  FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
                levels = c("Control", "Case"))

# Train the model
gbm_model <- gbm_dia(X_toy, y_toy)
print(gbm_model)


E2E documentation built on Aug. 27, 2025, 1:09 a.m.