# Empirical Bayesian Elastic Net (EBEN)

### Description

Fast EBEN algorithms.

EBEN implements a normal and generalized gamma hierearchical priors.

( ** ) Two parameters (alpha, lambda) are equivalent with elastic net priors.

( ** ) When parameter alpha = 1, it is equivalent with EBlasso-NE (normal + exponential)

Two models are available for both methods:

( ** ) General linear regression model.

( ** ) Logistic regression model.

Multi-collinearity:

( ** ) for group of high correlated or collinear variables: EBEN identifies the group of variables estimates their effects together.

( ** ) group of variables can be selected together.

*Epistasis (two-way interactions) can be included for all models/priors

*model implemented with memory efficient c code.

*LAPACK/BLAS are used for most linear algebra computations.

### Details

Package: | EBEN |

Type: | Package |

Version: | 4.6 |

Date: | 2015-10-06 |

License: | gpl |

### Author(s)

Anhui Huang

### References

key algorithms:

Cai, X., Huang, A., and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12, 211.

Huang A, Xu S, Cai X. (2013). Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 14(1):5.

Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79

Other publications:

Huang, A., E. Martin, et al. (2014). "Detecting genetic interactions in pathway-based genome-wide association studies." Genet Epidemiol 38(4): 300-309.

Huang, A., S. Xu, et al. (2014). "Whole-genome quantitative trait locus mapping reveals major role of epistasis on yield of rice." PLoS ONE 9(1): e87330.

Huang, A. (2014). "Sparse model learning for inferring genotype and phenotype associations." Ph.D Dissertation. University of Miami(1186).