Nothing
#' EDMeasure: A package for energy-based dependence measures
#'
#' The EDMeasure package provides measures of mutual dependence and tests of mutual independence,
#' independent component analysis methods based on mutual dependence measures,
#' and measures of conditional mean dependence and tests of conditional mean independence.
#'
#' The three main parts are:
#' \itemize{
#' \item mutual dependence measures via energy statistics
#' \itemize{
#' \item measuring mutual dependence
#' \item testing mutual independence
#' }
#' \item independent component analysis via mutual dependence measures
#' \itemize{
#' \item applying mutual dependence measures
#' \item initializing local optimization methods
#' }
#' \item conditional mean dependence measures via energy statistics
#' \itemize{
#' \item measuring conditional mean dependence
#' \item testing conditional mean independence
#' }
#' }
#'
#' @section Mutual Dependence Measures via Energy Statistics:
#' \strong{Measuring mutual dependence}
#'
#' The mutual dependence measures include:
#' \itemize{
#' \item asymmetric measure \eqn{\mathcal{R}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item symmetric measure \eqn{\mathcal{S}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item complete measure \eqn{\mathcal{Q}_n} based on complete V-statistics
#' \item simplified complete measure \eqn{\mathcal{Q}_n^\star} based on incomplete V-statistics
#' \item asymmetric measure \eqn{\mathcal{J}_n} based on complete measure \eqn{\mathcal{Q}_n}
#' \item simplified asymmetric measure \eqn{\mathcal{J}_n^\star} based on simplified complete measure
#' \eqn{\mathcal{Q}_n^\star}
#' \item symmetric measure \eqn{\mathcal{I}_n} based on complete measure \eqn{\mathcal{Q}_n}
#' \item simplified symmetric measure \eqn{\mathcal{I}_n^\star} based on simplified complete measure
#' \eqn{\mathcal{Q}_n^\star}
#' }
#'
#' \strong{Testing mutual independence}
#'
#' The mutual independence tests based on the mutual dependence measures are implemented as permutation
#' tests.
#'
#' @section Independent Component Analysis via Mutual Dependence Measures:
#' \strong{Applying mutual dependence measures}
#'
#' The mutual dependence measures include:
#' \itemize{
#' \item distance-based energy statistics
#' \itemize{
#' \item asymmetric measure \eqn{\mathcal{R}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item symmetric measure \eqn{\mathcal{S}_n} based on distance covariance \eqn{\mathcal{V}_n}
#' \item simplified complete measure \eqn{\mathcal{Q}_n^\star} based on incomplete V-statistics
#' }
#' }
#' \itemize{
#' \item kernel-based maximum mean discrepancies
#' \itemize{
#' \item d-variable Hilbert--Schmidt independence criterion dHSIC\eqn{_n} based on
#' Hilbert--Schmidt independence criterion HSIC\eqn{_n}
#' }
#' }
#'
#' \strong{Initializing local optimization methods}
#'
#' The initialization methods include:
#' \itemize{
#' \item Latin hypercube sampling
#' \item Bayesian optimization
#' }
#'
#' @section Conditional Mean Dependence Measures via Energy Statistics:
#' \strong{Measuring conditional mean dependence}
#'
#' The conditional mean dependence measures include:
#' \itemize{
#' \item conditional mean dependence of \code{Y} given \code{X}
#' \itemize{
#' \item martingale difference divergence
#' \item martingale difference correlation
#' \item martingale difference divergence matrix
#' }
#' }
#' \itemize{
#' \item conditional mean dependence of \code{Y} given \code{X} adjusting for the dependence on \code{Z}
#' \itemize{
#' \item partial martingale difference divergence
#' \item partial martingale difference correlation
#' }
#' }
#'
#' \strong{Testing conditional mean independence}
#'
#' The conditional mean independence tests include:
#' \itemize{
#' \item conditional mean independence of \code{Y} given \code{X} conditioning on \code{Z}
#' \itemize{
#' \item martingale difference divergence under a linear assumption
#' \item partial martingale difference divergence
#' }
#' }
#' The conditional mean independence tests based on the conditional mean dependence measures are
#' implemented as permutation tests.
#'
#' @name EDMeasure-package
#'
#' @aliases EDMeasure
#'
#' @docType package
#'
#' @title Energy-Based Dependence Measures
#'
#' @author Ze Jin \email{zj58@cornell.edu},
#' Shun Yao \email{shunyao2@illinois.edu}, \cr
#' David S. Matteson \email{matteson@cornell.edu},
#' Xiaofeng Shao \email{xshao@illinois.edu}
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.