EEML: Ensemble Explainable Machine Learning Models

View source: R/EEML.R

EEMLR Documentation

Ensemble Explainable Machine Learning Models

Description

Ensemble Explainable Machine Learning Models

Usage

EEML(df, Weight)

Arguments

df

List of dataframes containing various explainable scores for each model

Weight

Ensemble weights of the models (from weight function)

Value

  • ImpScore: Final variable important score of EEML model

References

  • Paul, R.K., Das, T. and Yeasin, M., 2023. Ensemble of time series and machine learning model for forecasting volatility in agricultural prices. National Academy Science Letters, 46(3), pp.185-188.

  • Yeasin, M. and Paul, R.K., 2024. OptiSembleForecasting: optimization-based ensemble forecasting using MCS algorithm and PCA-based error index. The Journal of Supercomputing, 80(2), pp.1568-1597.

Examples


library("EEML")
df1<- as.data.frame(matrix(rnorm(50) , nrow = 10) )
df2<- as.data.frame(matrix(rnorm(50) , nrow = 10) )
df3<- as.data.frame(matrix(rnorm(50) , nrow = 10) )
rownames(df1)<- rownames(df2)<-rownames(df3)<-paste0("Var", seq(1,10,1))
colnames(df1)<- colnames(df2)<-colnames(df3)<-paste0("Exp", seq(1,5,1))
DF<- list(df1, df2, df3)
EEML<-EEML(df=DF,Weight=NULL)


EEML documentation built on Sept. 11, 2024, 6:54 p.m.

Related to EEML in EEML...