Nothing
# library(EFAfactors)
#
# set.seed(123) ## 423 for example R R R nn
#
# NF <- c(3)
# FC <- c(0)
# VPF <- c(4)
# PL <- c("H")
# CL <- c("L")
# N <- c(500)
# distribution <- "normal"
#
# trials.length <- length(NF) * length(FC) * length(VPF) * length(PL) * length(CL) * length(N)
# trial.list <- list(NF=NF, FC=FC, VPF=VPF, PL=PL, CL=CL, N=N)
# condition.names <- c("F", "FC", "VPF", "PL", "CL", "N")
# methods.names <- c("Hull", "CD", "PA", "EKC", "FF", "CDF","DNN")
# results.names <- c("nfact", "ACC")
#
# times <- 1
# results.pre <- matrix(0, trials.length, length(methods.names) + 1)
# conditions <- matrix(0, trials.length, length(trial.list))
# results <- array(dim = c(length(NF), length(FC), length(VPF), length(PL), length(CL), length(N),
# length(results.names), length(methods.names), times),
# dimnames = list(paste0("F=", NF), paste0("FC=", FC), paste0("VPF=", VPF),
# paste0("PL=", PL), paste0("CL=", CL), paste0("N=", N),
# results.names, methods.names, paste0("times=", 1:times)))
#
# vis <- TRUE
# CDF.obj <- FF.obj <- CD.obj <- NULL
# CDF.obj$nfact <- FF.obj$nfact <- CD.obj$nfact <- 0
# posi.start <- 1
# for(posi in posi.start:trials.length){
# runs.cur <- get.runs(posi, trial.list)
#
# NF.cur <- NF[runs.cur[1]]; FC.cur <- FC[runs.cur[2]]; VPF.cur <- VPF[runs.cur[3]]
# PL.cur <- PL[runs.cur[4]]; CL.cur <- CL[runs.cur[5]]; N.cur <- N[runs.cur[6]]
# conditions[posi, ] <- c(NF.cur, FC.cur, VPF.cur, PL.cur, CL.cur, N.cur)
#
# time.posi <- 0
# results.cur <- NULL
# for(t in 1:times){
# cat("===============================", paste0(posi, "/", trials.length), ":",
# paste0(t, "/", times), "===============================\n")
#
# time.cur <- system.time({
# response <- NULL
# while (is.null(response)) {
# data <- NULL
# while (is.null(data)) {
# data <- tryCatch(
# EFAsim.data(nfact=NF.cur, vpf=VPF.cur, N=N.cur,
# distri = distribution, fc=FC.cur, pl=PL.cur, cl=CL.cur,
# vis = vis),
# error = function(e){ NULL })
# }
# response <- data$response
#
# }
#
# # EFAhclust.obj <- EFAhclust(response)
# # EFAkmeans.obj <- EFAkmeans(response)
# # plot(EFAkmeans.obj)
# # Hull.obj <- Hull(response)
# # PA.obj <- PA(response)
# # EKC.obj <- EKC(response)
# # DNN.obj <- DNN_predictor(response)
#
# # FF.obj <- FF(response)
# # CD.obj <- CD(response)
# # CDF.obj <- CDF(response)
#
# methods.names <- c("Hull", "CD", "PA", "EKC", "FF", "CDF","DNN")
#
# retained.factors <- c(Hull.obj$nfact, CD.obj$nfact, PA.obj$nfact, EKC.obj$nfact, FF.obj$nfact, CDF.obj$nfact, DNN.obj$nfact)
#
#
# results.cur <- rbind(results.cur, (retained.factors == rep(NF.cur, length(methods.names))))
# results[paste0("F=", NF.cur), paste0("FC=", FC.cur), paste0("VPF=", VPF.cur),
# paste0("PL=", PL.cur), paste0("CL=", CL.cur), paste0("N=", N.cur),
# "nfact", , t] <- retained.factors
# results[paste0("F=", NF.cur), paste0("FC=", FC.cur), paste0("VPF=", VPF.cur),
# paste0("PL=", PL.cur), paste0("CL=", CL.cur), paste0("N=", N.cur),
# "ACC", , t] <- results.cur[t, ]
#
# })
# time.posi <- time.cur[3] + time.posi
# cat("mean of time cost in", paste0(posi, "/", trials.length), ":", round(time.posi / t, 3), "\n\n")
# results.pre[posi, ] <- round(c(apply(results.cur, 2, sum)/t, time.posi / t), 3)
# if(posi == 1){
# res_preview <- data.frame(t(conditions[1:posi, ]), t(results.pre[1:posi, ]))
# }else{
# res_preview <- data.frame(conditions[1:posi, ], results.pre[1:posi, ])
# }
# rownames(res_preview) <- 1:posi
# colnames(res_preview) <- c(condition.names, methods.names, "mean time")
# cat("------------------- current accurace pre-view -------------------\n")
# print(res_preview)
# cat("\n")
# cat("------------------- current retained factors -------------------\n")
# print(results[paste0("F=", NF.cur), paste0("FC=", FC.cur), paste0("VPF=", VPF.cur),
# paste0("PL=", PL.cur), paste0("CL=", CL.cur), paste0("N=", N.cur),
# "nfact", , t])
# cat("\n")
# cat("=============================================================================\n")
# cat("\n")
# }
#
# }
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.