View source: R/Classifier_Bayes.R
Classifier_Bayes | R Documentation |
A classifier based on Bayes rule, that is maximum a posterior probabilities of class membership
Classifier_Bayes(dat, n, p, g, pi, mu, sigma, ncov = 2)
dat |
An n\times p matrix where each row represents an individual observation |
n |
Number of observations. |
p |
Dimension of observation vecor. |
g |
Number of classes. |
pi |
A g-dimensional vector for the initial values of the mixing proportions. |
mu |
A p \times g matrix for the initial values of the location parameters. |
sigma |
A p\times p covariance matrix if |
ncov |
Options of structure of sigma matrix; the default value is 2;
|
The posterior probability can be expressed as
τ_i(y_j;θ)=Prob\{z_{ij}=1|y_j\}=\frac{π_iφ(y_j;μ_i,Σ_i)}{∑_{h=1}^gπ_hφ(y_j;μ_h,Σ_h) },
where φ is a normal probability function with mean μ_i and covariance matrix Σ_i, and z_{ij} is is a zero-one indicator variable denoting the class of origin. The Bayes' Classifier of allocation assigns an entity with feature vector y_j to Class C_k if
k= arg max_i τ_i(y_j;θ).
cluster |
A vector of the class membership. |
n<-150 pi<-c(0.25,0.25,0.25,0.25) sigma<-array(0,dim=c(3,3,4)) sigma[,,1]<-diag(1,3) sigma[,,2]<-diag(2,3) sigma[,,3]<-diag(3,3) sigma[,,4]<-diag(4,3) mu<-matrix(c(0.2,0.3,0.4,0.2,0.7,0.6,0.1,0.7,1.6,0.2,1.7,0.6),3,4) dat<-rmix(n=n,pi=pi,mu=mu,sigma=sigma,ncov=2) cluster<-Classifier_Bayes(dat=dat$Y,n=150,p=3,g=4,mu=mu,sigma=sigma,pi=pi,ncov=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.