EPGLM: Gaussian Approximation of Bayesian Binary Regression Models

The main functions compute the expectation propagation approximation of a Bayesian probit/logit models with Gaussian prior. More information can be found in Chopin and Ridgway (2015). More models and priors should follow.

AuthorJames Ridgway
Date of publication2016-08-23 16:31:11
MaintainerJames Ridgway <james.ridgway@ensae.fr>
LicenseGPL (>= 2)
Version1.1.2

View on CRAN

Files

EPGLM
EPGLM/src
EPGLM/src/header.h
EPGLM/src/Makevars
EPGLM/src/EP.h
EPGLM/src/EPclogit.h
EPGLM/src/function.cpp
EPGLM/NAMESPACE
EPGLM/R
EPGLM/R/EP.R
EPGLM/MD5
EPGLM/DESCRIPTION
EPGLM/man
EPGLM/man/EPprobit.Rd EPGLM/man/EPlogitCxx.Rd EPGLM/man/EPGLM-package.Rd EPGLM/man/EPprobitCxx.Rd EPGLM/man/EPlogit.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.