plsi.lr.v1 | R Documentation |
Partial linear single index linear regression for scalar outcome
plsi.lr.v1(
data,
Y.name,
X.name,
Z.name,
spline.num,
spline.degree,
initial.random.num
)
data |
A data set |
Y.name |
Variable name for scalar outcome |
X.name |
Variable name vector for exposures |
Z.name |
Variable name vector for confounders |
spline.num |
A number representing the degree of freedom of B-spline basis for link function |
spline.degree |
A number representing the degree of the piece-wise polynomial of B-spline basis for link function |
initial.random.num |
A number representing the number of random initials used in the function |
A list of model estimation and prediction results
Yuyan Wang
# example to run the function
data(nhanes.new)
dat <- nhanes.new
# specify variable names
Y.name <- "log.triglyceride"
X.name <- c("X1_trans.b.carotene", "X2_retinol", "X3_g.tocopherol", "X4_a.tocopherol",
"X5_PCB99", "X6_PCB156", "X7_PCB206",
"X8_3.3.4.4.5.pncb", "X9_1.2.3.4.7.8.hxcdf", "X10_2.3.4.6.7.8.hxcdf")
Z.name <- c("AGE.c", "SEX.Female", "RACE.NH.Black",
"RACE.MexicanAmerican", "RACE.OtherRace", "RACE.Hispanic" )
# specify spline degree of freedom
spline.num = 5
# specify spline degree
spline.degree = 3
# specify number of random initials for estimation
initial.random.num = 1
# run the model
set.seed(2023)
model_1 <- plsi.lr.v1(data = dat, Y.name = Y.name, X.name = X.name, Z.name = Z.name,
spline.num, spline.degree, initial.random.num)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.