R/RcppExports.R

Defines functions KalmanFilter_back

Documented in KalmanFilter_back

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#' @title Backwards Kalman filter
#' @description Finds the most likely path through a dynamical linear model.
#' @param rhos A \code{numeric} containing the diagonal elements of the transition matrix of the evolution equation.
#' @param dee A \code{numeric} of the same length as \code{rho} containing the discrepancies or biases in the observation process.
#' @param R A \code{numeric} representing the variances of the observation process.
#' @param Q A \code{matrix} of dimensions \code{length(rho)} and \code{length(rho)} representing the covariance of the evolution process.
#' @param C A a \code{matrix} of dimensions \code{length(rho)} and \code{length(R)} representing the observation operator of the observation process.
#' @param P A \code{matrix} of dimensions \code{length(rho)} and \code{length(rho)} representing the covariance matrix of the first state of the evolution process.
#' @param xhat A \code{numeric} of the same length as \code{rho} representing the expectation of the first state of the evolution process.
#' @param Time A numeric The length of time of the dynamical linear model.
#' @param y A \code{matrix} of dimensions \code{Time} and \code{length(R)} of observations of the observation process.
#' @param obs A \code{matrix} of dimensions \code{Time} and \code{length(R)}. \code{1} means in the \code{i},\code{j}th element means that the \code{j}th output is observed at tim \code{i}.
#' @details For the model with the evolution process \deqn{x_{t+1}\sim{}N(\rho{}\cdot{}x_{t},Q)} and observation process \deqn{y_{t}\sim{}N(\rho{}(x_{t} + \delta),diag(R))}.
#' @details Using the sequential Kalman filter, the function gives the mostly path of \eqn{x_{t}} for all \eqn{t}.
#' @return A \code{matrix} with dimensions \code{nrow(time)} and \code{length(xhat)} representing the most likely values of the latent variables.
#' @references Chui, C.K. & Chen, G. (2009) Kalman Filtering with Real-Time Applications. Springer, Berlin, Heidelberg, Fourth Edtion.
#' @references Kalman, R. E. (1960) A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng., 82, pp. 35-45.
#' @examples
#'\donttest{
#' fit <- fit_ensemble_model(observations = list(SSB_obs, Sigma_obs),
#'                simulators = list(list(SSB_ewe, Sigma_ewe, "EwE"),
#'                                  list(SSB_fs,  Sigma_fs, "FishSUMS"),
#'                                  list(SSB_lm,  Sigma_lm, "LeMans"),
#'                                  list(SSB_miz, Sigma_miz, "Mizer")),
#'                priors = EnsemblePrior(4,
#'                ind_st_params = IndSTPrior(parametrisation_form = "lkj",
#'                var_params= list(1,1), cor_params = 10, AR_params = c(2, 2))),
#'                full_sample = FALSE) #Only optimise in this case
#' transformed_data <- get_transformed_data(fit)
#' ex.fit <- fit@point_estimate$par
#' params <- get_parameters(ex.fit)
#' ret <- KalmanFilter_back(params$AR_params, params$lt_discrepancies,
#'                           transformed_data$all_eigenvalues_cov,params$SIGMA,
#'                           transformed_data$bigM, params$SIGMA_init, params$x_hat,
#'                           fit@ensemble_data@stan_input$time,transformed_data$new_data,
#'                           transformed_data$observation_available)
#'}
#' @export
KalmanFilter_back <- function(rhos, dee, R, Q, C, P, xhat, Time, y, obs) {
    .Call(`_EcoEnsemble_KalmanFilter_back`, rhos, dee, R, Q, C, P, xhat, Time, y, obs)
}

Try the EcoEnsemble package in your browser

Any scripts or data that you put into this service are public.

EcoEnsemble documentation built on April 4, 2025, 1:55 a.m.